プログラマブル AC/DC 電源

APS-1102A

コントロール ソフトウェア ユーザ マニュアル

REVISION 1.0 August 2015

ISO-9001 CERTIFIED MANUFACTURER G≝INSTEK

保証

プログラマブル AC/DC 電源 APS-1102A

本機器の正常な使用状態で発生する故障について、お買上げの日より1年間に発生した故障については無償で修理を致します。

ただし、保証期間内でも次の場合は有償修理になります。

- 1. 火災, 天災, 異常電圧等による故障, 損傷。
- 2. 不当な修理, 調整, 改造がなされた場合。
- 3. 取扱いが不適当なために生ずる故障,損傷。
- 4. 故障が本製品以外の原因による場合。
- 5. お買上げ明細書類のご提示がない場合。

お買上げ時の明細書(納品書, 領収書など)は保証書の代わりとなりますので, 大切に保管してください。

また,校正作業につきましては有償にて受け賜ります。

この保証は日本国内で使用される場合にのみ有効です。

This warranty is valid only Japan.

本マニュアルについて

ご使用に際しては,必ず本マニュアルを最後までお読みいただき,正しくご使用ください。また,いつでも 見られるよう保存してください。

本書の内容に関しましては万全を期して作成いたしましたが,万一不審な点や誤り,記載漏れなどがご ざいましたらご購入元または当社までご連絡ください。

2015年8月編集

このマニュアルは著作権によって保護された知的財産情報を含んでいます。当社はすべての権利を保持します。当社の文書による事前承諾なしに、このマニュアルを複写、転載、翻訳することはできません。

このマニュアルに記載された情報は印刷時点のものです。製品の仕様、機器、および保守手順は、いつでも 予告なしで変更することがありますので予めご了承ください

Good Will Instrument Co., Ltd.

No. 7-1, Jhongsing Rd., Tucheng City, Taipei County 236, Taiwan.

----- はじめに -----

このたびは, APS シリーズ プログラマブル AC/DC 電源をお買い求めいただき, ありがとうございます。

電気製品を安全に正しくお使いいただくために、まず、次のページの"安全にお使いいただくために" をお読みください。

- ●この説明書の章構成は次のようになっています。 初めて使用する方は、"1.概説"からお読みください。
- 1. 概説 コントロールソフトウェアの機能の概要を説明しています。
- インストール コントロールソフトウェアの動作に必要な環境や、インストールの方法を説明して います。
- 3. コントロールソフトウェアの操作 起動・終了方法, ウィンドウの構成, 環境設定の方法など, コ ントロールソフトウェアの基本的な操作方法について説明しています。
- 4. 基本コントローラ コントロールソフトウェアの主機能である, "基本コントローラ"の操作方法を 説明しています。
- 5. シーケンス コントロールソフトウェアの主機能である, "シーケンス"の操作方法を説明してい ます。
- 6. 計測器ロギング 計測値ロギングの操作方法を説明しています。
- 7. 任意波形編集 任意波形編集ツール(WAVE DESIGNER for APS-1102A)の操作方法を説明 しています。
- 8. 保守 CD-ROM の管理や,破損時の対処について説明しています。

――― 安全にお使いいただくために ―――

安全にご使用いただくため、下記の警告や注意事項は必ず守ってください。

これらの警告や注意事項を守らずに発生した損害については,当社はその責任と保証を負いかね ますのでご了承ください。

●取扱説明書の内容は必ず守ってください。

取扱説明書には、この製品を安全に操作・使用するための内容を記載しています。

ご使用に当たっては、この説明書を必ず最初にお読みください。

この取扱説明書に記載されているすべての警告事項は,重大事故に結びつく危険を未然に防止す るためのものです。必ず守ってください。

おかしいと思ったら

本製品が制御している電源システムから煙が出たり,変な臭いや音がしたりする場合は,直ちに使 用を中止してください。

このような異常が発生したら、修理が完了するまで使用できないようにして、直ちにお求めの当社又 は当社代理店にご連絡ください。 —— 免責事項 ——

"コントロールソフトウェア for APS-1102A"(以降,本ソフトウェアと略記)は,株式会社テクシオ・テクノロジーが十分な試験及び検査を行って出荷しております。

万一製造上の不備による故障又は輸送中の事故などによる不具合がありましたら,当社又は当社 代理店までご連絡ください。

本ソフトウェアの使用により万一損害が生じたとしても、当社はその損害において一切の責任を負いません。また、本ソフトウェアに不備があった場合でも、当社は修正及びサポートの義務を負わない ものとします。ご使用はお客様の責任において行ってください。

本ソフトウェアの著作権は当社にあり、日本国著作権法及び国際条約によって保護されています。 お客様は、バックアップ又は保存用の目的に限って、本ソフトウェアのコピーを1部作成すること、又 はオリジナルをバックアップ又は保存用の目的のみに保持して、本ソフトウェアをハードディスクにイン ストールできます。

この取扱説明書の内容の一部又は全部を無断で転載することはできません。

万一不具合,又はご不明な点がありましたら,お求めになりました当社又は当社代理店にご連絡く ださい。

ご連絡の際は、型式名(又は製品名), バージョンと、できるだけ詳しい症状やご使用の状態をお知らせください。

目 次

ページ

はじめ	りに	i
安全にお	s使い	いただくためにii
免責事項	€·著	作権について・ご連絡にあたってiii
目次		i
図目次		v
表目次		vi
1. 概訪	ŧ	
1.1	概要	Į2
1.2	ソフ	トウェアの構成3
1.3	ソフ	トウェア起動時の機器との通信3
1.4	本書	の表記について3
2. イン	ストー	ール
2.1	シス	テム要件5
2.2	イン	ストールの手順6
2.2.	1	USB ドライバソフトウェアのインストール6
2.2.	2	コントロールソフトウェア for APS-1102A のインストール
3. コン	トロ-	-ルソフトウェアの操作8
3.1	起動	J·終了9
3.1.	1	起動9
3.1.	2	終了
3.2	機器	その通信10
3.3	メイ	ンウィンドウの構成11
3.4	機能	ɛ切换∙機能表示部
3.5	共通	9表示部12
3.5.	1	オペレーションバー
3.5.	2	ステータスモニタ12
3.5.	3	ステータスバー
3.6	環境	記定13
3.6.	1	通信種類13
3.7	エラ	ーメッセージ
4. 基本	ミコン	トローラ14
4.1	ウィ	ンドウ各部の名称
4.2	各部	3の操作16
4.2.	1	メニューバー
4.2.	2	ツールバー
4.2.	3	更新・設定ボタン17
4.2.	4	基本設定17
4.2.	5	出力設定

4.2.6	リミッタ設定	. 19
4.2.7	オペレーションバー	. 19
4.3 機器	科設定ファイル	. 20
4.3.1	名前を付けて保存	. 20
4.3.2	上書き保存	. 20
4.3.3	ファイルの読み出し	20
4.4 メモ	у	. 21
4.4.1	ストア	. 21
4.4.2	リコール	. 21
4.4.3	リセット	. 21
4.5 ステ	ータス	. 22
4.5.1	ステータスモニタ	. 22
4.5.2	クリア	. 22
4.6 ロギ	シング	. 23
4.7 任意	[波形編集	. 23
4.8 通信	言未接続状態での制約	. 23
5. シーケン	ス	. 24
5.1 ウィ	ンドウ各部の名称	. 25
5.2 各部	『の操作	. 26
5.2.1	メニューバー	. 26
5.2.2	ツールバー	. 27
5.2.3	基本設定	. 27
5.2.4	ステップ操作	. 28
5.2.5	ステップ遷移パラメタ	. 31
5.2.6	ステップ実行パラメタ	. 32
5.2.7	オペレーションバー	. 32
5.3 シー	・ケンスデータファイル	. 33
5.3.1	名前を付けて保存	. 33
5.3.2	上書き保存	. 33
5.3.3	ファイルの読み出し	. 33
5.4 実行	ī	. 34
5.4.1	開始	. 34
5.4.2	停止	. 34
5.4.3	ホールド	. 34
5.4.4	ブランチ	. 34
5.4.5	出力オン	. 35
5.4.6	出力オフ	. 35
5.4.7	実行モードの切り換え	. 35
6. 計測器□	1ギング	. 36
6.1 計測	」値ロギングウィンドウを開く・閉じる	. 37
6.1.1	ロギングウィンドウを開く	. 37
6.1.2	ロギングウィンドウを閉じる	. 37

6.2	2 7	ウィンドウ各部の名称	37
6.3	3 名	各部の操作	38
6	5.3.1	メニューバー	38
6	5.3.2	ツールバー	38
6	5.3.3	開始・停止・クリア	38
6	6.3.4	ロギング条件	39
6.4	. ⊏	コグ表示部	40
6.5	5 🗄	計測値ログファイル	40
7.	任意派	皮形編集	41
7.1	根	既要	42
7.2	2 任	壬意波形編集ウィンドウを開く・閉じる	43
7	7.2.1	任意波形編集ウィンドウを開く	43
7	7.2.2	任意波形編集ウィンドウを閉じる	43
7.3	3 Ļ	ウィンドウ各部の名称	44
7.4	4 名	各部の操作	45
7	7.4.1	メニューバー	45
7	7.4.2	ツールバー	46
7	7.4.3	操作パネル部	46
7	7.4.4	波形表示部	46
7.5	5 沥	皮形表示部	47
7	7.5.1	波形表示領域	47
7	7.5.2	表示倍率	47
7	7.5.3	マーカ	48
7	7.5.4	波形操作	49
7	7.5.5	任意波形編集例	51
7	7.5.6	グリッド描画	51
7.6	ら フ	ファイル操作	52
7	7.6.1	独自形式ファイル	52
7	7.6.2	テキスト形式ファイル	52
7	7.6.3	ファイルの読み込み	53
7.7	7 沥	皮形の印刷	53
7.8	3 彩	新規任意波形編集	54
7	7.8.1	範囲・ページ	55
7	7.8.2	波形選択	55
7	7.8.3	パラメタ設定	56
7	7.8.4	波形関数設定	57
7	7.8.5	波形作成例	61
7	7.8.6	任意波形編集パラメタファイル操作	63
7	7.8.7	印刷	63
7.9)	新規補間編集	64
7	7.9.1	制御点の設定	65
7	7.9.2	補間実行	66

7.9.3	波形作成例	67
7.9.4	制御点ファイル操作	68
7.10	波形間演算	69
7.10.1	演算の種類	70
7.10.2	演算対象の設定	70
7.10.3	演算の実行	70
7.10.4	波形作成例	71
7.11	圧縮/伸張	72
7.11.1	横軸の圧縮/伸張	72
7.11.2	縦軸の圧縮/伸張	73
7.11.3	波形作成例	74
7.12	システム設定	76
7.12.1	X 軸単位設定	76
7.12.2	Y 軸単位設定	77
7.13	メモリ	77
7.13.1	メモリ転送	77
7.13.2	メモリクリア	78
8. 保守 …		79
8.1 CI	D-ROM の管理	80
8.2 破	損 CD-ROM の交換	80
8.3 バ	ージョンの確認	80

付 図・付 表

■図目次

	~	ージ
図 3-1	デスクトップのショートカットアイコン	9
図 3-2	終了確認ダイアログ	9
図 3-3	通信未接続状態で起動したときに表示されるダイアログ	10
図 3-4	メインウィンドウの構成	11
図 3-5	オペレーションバー	12
図 3-6	ステータスモニタ	12
図 3-7	ステータスバー	12
図 3-8	環境設定ダイアログ	13
図 4-1	基本コントローラウィンドウ	15
図 4-2	基本コントローラのメニュー構成	16
図 4-3	基本コントローラのツールバー	16
図 4-4	更新・設定ボタン	17
図 4-5	基本設定	17
図 4-6	設定クリア確認ダイアログ	17
図 4-7	出力設定	18
図 4-8	設定範囲のエラーダイアログ例	18
図 4-9	リミッタ設定	19
図 4-10) OUTPUT ボタンの表示	19
図 4-11	メモリストア/リコールダイアログ	21
図 4-12	2 ステータス表示例(センシング電圧異常)	22
図 5-1	シーケンスウィンドウ	25
図 5-2	シーケンスのメニュー構成	26
図 5-3	シーケンスのツールバー	27
図 5-4	基本設定(出力モード・出力レンジ)	27
図 5-5	設定クリア確認ダイアログ	27
図 5-6	ステップ操作ボタン	28
図 5-7	ステップ削除の確認ダイアログ	28
図 5-8	データコピーのエラーダイアログ	30
図 5-9	終了位相の有効・無効	31
図 5-10)動作種別の設定	32
図 5-11	シーケンスのオペレーションバー	32
図 6-1	計測値ロギングウィンドウ	37
図 6-2	計測値ロギングのメニュー構成	38
図 6-3	計測値ロギングのツールバー	38
図 6-4	ロギング設定ダイアログ	39
図 7-1	波形作成例	42
図 7-2	任意波形編集の終了確認ダイアログ	43

図 7-3	3	任意波形編集ウィンドウ	44
図 7-4	4	任意波形編集のメニュー構成	45
図 7-8	5	任意波形編集のツールバー	46
図 7-6	6	操作パネル画面遷移	46
図 7-7	7	クリップボード操作	50
図 7-8	8	新規任意波形編集	54
図 7-9	9	「波形関数」を選択したとき	57
図 7-1	10	新規補間編集	64
図 7-′	11	波形演算	69
図 7-′	12	压縮/伸張	72
図 7-′	13	メモリ転送/メモリクリアダイアログ	78
図 8-′	1	環境設定ダイアログウィンドウ	80

■表目次

		ページ
表 2-1	システム要件	5
表 4-1	ステータス表示一覧	
表 7-1	波形選択	
表 7-2	標準波形のパラメタ	
表 7-3	組み込み定数	
表 7-4	演算子	
表 7-5	組み込み関数	
表 7-6	横軸ユーザ単位例	76

1.1	概要2
1.2	ソフトウェアの構成3
1.3	ソフトウェア起動時の機器との通信3
1.4	本書の表記について

1.1 概要

本ソフトウェアは、APS シリーズ プログラマブル AC/DC 電源(以下,機器と略します)のリモート制御,任意波形機能、シーケンス機能をサポートするアプリケーションです。パーソナルコンピュータ (PC)の Windows(XP/7)上で動作し、USB を介して、機器に対して出力制御データ、任意波形データ、シーケンスデータを転送したり、各種機能を実行したりすることができます。

本ソフトウェアの主な機能は、下記のとおりです。シーケンス機能の詳細な動作については、機器の 取扱説明書をご参照ください。

■基本操作機能

- リモートコントロール
- ステータスモニタ
- 計測値のロギング

■任意波形機能

- 任意波形データの作成, 編集, 保存
- 機器への任意波形データ転送

■シーケンス機能

- ●シーケンスデータの作成, 編集, 保存
- 機器へのシーケンスデータ転送
- シーケンス機能の実行制御
- シーケンス実行中のモニタ表示

1.2 ソフトウェアの構成

本ソフトウェアは、同一画面上に表示される2つの主機能と2つのツールから構成されます。

■主機能

- 基本コントローラ
- シーケンス機能
- ■ツール機能
 - 任意波形作成機能
 - ロギング機能

1.3 ソフトウェア起動時の機器との通信

本ソフトウェアは、ソフトウェア起動時に、機器との通信接続の確認を行います。 機器との通信接続が確立できた場合は、基本コントローラの各種パラメタ設定を機器から取得し、 PC 画面に表示します。

機器と通信が接続できなかった場合は、本ソフトウェアはそのまま起動し、基本コントローラの各種 パラメタには本ソフトウェアが持っているデフォルト設定が入ります。機器と接続していなくても、本ソフ トウェアで各機能の設定データを作成することができます。

コントロールソフトウェア for APS-1102A の環境設定と, 接続する APS シリーズのモデル名が異な った状態で使用した場合は, 予期しない動作をする場合があります。必ず, 本ソフトウェアの環境設定 を, 接続する APS シリーズのモデル名と一致させて使用してください。

1.4 本書の表記について

本書では、本ソフトウェアの解説において、次のような表記規則で記述します。

- 画面に表示されるメニュー名やユーザが入力する文字列等:ゴシック体,[]で囲む。
 例:[波形(T)], [s=2*pi;]
- 画面に表示されるボタン名やユーザが操作するキー等:ゴシック体, ____で囲む。
 例: キャンセル, OK, Alt
- ●本ソフトウェア内の各機能や各項目を表す文字列等:ゴシック体,「」で囲む。 例:「基本コントローラ」,「任意波形編集ツール」
- あるキーを押しながら,別のキーを押す: "+"で接続して表示する。例: Ctrl + O
- あるキーを押し, 離してから, 別のキーを押す:","で接続して表示する。例:Alt, F

2. インストール

2.1	システム要件5
2.2	インストールの手順

2.1 システム要件

本ソフトウェアをインストールする前に、システムが表 2-1の要件を満足していることをご確認ください。

表2-1 システム要件

項目	内容
CPU	300 MHz 以上(1.6 GHz 以上を推奨)
メモリ	128 MB 以上(512 MB 以上を推奨)
ハードディスク空き容量	64 MB 以上
ディスプレイ	1024×768 ピクセル以上, 256 色以上表示可能
OS	Windows XP (32-bit)/7 (32-bit / 64-bit) 日本語版
ディスクドライブ	CD-ROM ドライブ
USB インタフェース	USB 1.1 フルスピード
ソフトウェアコンポーネント	Microsoft .NET Framework 2.0
	Microsoft .NET Framework 2.0 日本語 Language
	Pack

---- コメント ------

- 使用する OS の動作環境条件によっては、CPU、メモリが上記の仕様で動作できない場合もあ ります。
- CD-ROM ドライブは、本ソフトウェアのインストール時のみ必要です。

■ソフトウェアコンポーネントについて

.NET Framework 2.0 のコンポーネントは, Windows XP/7 では殆どの場合, 既にインストールされています。

本ソフトウェアは、インストール時にコンピュータに.NET Framework 2.0 がインストールされている かをチェックし、インストールされていない場合はインストールを促すメッセージを表示します。コンピュ ータがインターネットに接続されている場合は、自動でインターネットから.NET Framework 2.0 をダウ ンロードし、インストールします。

2.2 インストールの手順

本ソフトウェアのインストール/アンインストールを行う場合,管理者権限で Windows にログオンしてください。

本ソフトウェアと機器を通信接続するためには、USBドライバソフトウェアがインストールされている 必要があります。VISA 環境がコンピュータにセットアップされている場合は、USBドライバソフトウェア も既にインストールされています。VISA 環境がセットアップされていない場合は、2.2.1に従って、弊社 が提供している USBTMCドライバソフトウェアをインストールしてください。VISA(Virtual Instrument Software Architecture)は、計測器のソフトウェアアーキテクチャの標準化を進める IVI Foundation が 推奨している規格です。

2.2.1 USB ドライバソフトウェアのインストール

■VISA 環境を使用する場合

コンピュータに VISA 環境がセットアップされている場合は、VISA 環境で本ソフトウェアを使用することもできます。本ソフトウェアは National Instruments Corporation の NI-VISA Version 4.6.2 で動作 することを確認しています。他ベンダー製 VISA 環境での動作トラブルにつきましては対応致しかねま すので、予めご了承ください。

NI-VISA 環境で本ソフトウェアを使用する場合は、お客様にて National Instruments 社のライセン スを取得していただく必要がございます。NI-VISA についての詳細は、 National Instruments 社へお 問い合わせいただくか、 National Instruments 社の Web サイトでご確認ください 2.2.2 コントロールソフトウェア for APS-1102A のインストール

■インストール手順

- 1. CD-ROM をコンピュータの CD-ROM ドライブに入れます。
- 2. CD-ROMの APS-1102A PC Software¥setup.exe を実行します。インストーラが起動します。
- 3. ダイアログの指示に従い、次へを押してインストールします。
- 4. インストールが終了したら, CD-ROM を CD-ROM ドライブから取り出します。 インストールが終了すると, 本ソフトウェアを実行できるようになります(CF 3.1)。

■アンインストール手順

Windows の[コントロールパネル]ー[プログラムの追加と削除]の現在インストールされているプロ グラムの一覧から"コントロールソフトウェア for APS-1102A"を選択し,削除してください。

ただし、本ソフトウェアをインストールしたフォルダは削除されません。フォルダ内には本ソフトウェアの関連ファイルが残っていますが、アンインストール後にフォルダ及びフォルダ内のファイルを削除しても問題ありません。

3. ントロールソフトウェアの操作

3.1	起動·終了9
3.2	機器との通信
3.3	メインウィンドウの構成11
3.4	機能切換·機能表示部
3.5	共通表示部
3.6	環境設定 13
3.7	エラーメッセージ・・・・・・13

3.1 起動·終了

本ソフトウェアを起動、終了する方法を説明します。

3.1.1 起動

次の2通りの方法があります。デスクトップのショートカットは、本ソフトウェアのインストール時に自動的に作成されます。

- デスクトップのショートカットアイコン(図 3-1)をダブルクリックします。
- スタートメニューから, [スタート] [すべてのプログラム] [GW Instek] [コントロールソフト ウェア for APS-1102A]と選択します。

図3-1 デスクトップのショートカットアイコン

3.1.2 終了

次の3通りの方法があります。終了操作を行うと図3-2のダイアログが表示されます。終了する場合は ははいを、終了をキャンセルする場合はいいえを選択します。

- ウィンドウ右上にある×ボタンをクリックします。
- ウィンドウを選択した状態で, キーボードで Alt + F4 と操作します。
- ●メニューバーから、[ファイル(F)]-[終了(X)]と選択します。

図3-2 終了確認ダイアログ

<u>G<u></u>UINSTEK</u>

3.2 機器との通信

本ソフトウェアは, USB で接続された機器と通信を行い, 接続された機器に対し設定や制御を行う ことができます。以降の説明においては, コンピュータと機器が単に物理的に USB ケーブルで接続さ れている状態と区別するため, 本ソフトウェアと機器の通信が確立された状態にあることを"通信接続 状態", 本ソフトウェアと機器との通信が確立されていない状態を"通信未接続状態"と表します。

■通信未接続状態での起動

本ソフトウェアは, 起動時に, 機器との通信を試みます。通信が確立できない場合, 本ソフトウェア は通信未接続状態で起動します。通信未接続状態で起動したときは, 図 3-3のダイアログが表示され ます。

通信未接続状態では,機器をコンピュータから制御することはできませんが,設定データやシーケン スデータの作成やファイル保存は可能です。ただし,通信未接続状態で本ソフトウェアを使用する場合 でも,予め環境設定を接続する機器に合わせてください(CF3.3.6)。

エラー		
<u>^</u>	装置と通信できませんでした。	
	OK	

図3-3 通信未接続状態で起動したときに表示されるダイアログ

3.3 メインウィンドウの構成

		d) 環境設定
a)機能切換	■ コントロールソフトウエア for APS-1102A	
		本 項目数上 Power Scenity and Power Test Products Control Software Fr A PB-1102A
b) 機能表示部	出カモード AC-INT ・ 出カレンジ 100V 20 	0V
	出力設定	電流リミッタ設定
	交流電圧 0.0 [Vrms]	実効値 10.5 [Arms]
	直流電圧 [v]	下限 上限 ピーク値 -42.0 42.0 [Apk]
	周波数 50.0 [Hz]	電圧設定制限
	開始位相 0.0 [dee] 外部信号源 -	ピーク値 -220.0 [Vpk]
	波形 SIN ・ 外部入力ゲイン	周波数設定制限 1.0 550.0 [Hz]
		更新 設定
c) 共通表示部	OUTPUT OV OC RMS UNLOCK SAT_LMT	OC PK RTCNTerr DC OV DC UV OH Freq Watt Irms Ipk
	接続モデル: APS-1102A 接続方式: VISA	

図3-4 メインウィンドウの構成

a)	機能切換	L 3.4
b)	機能表示部	(.
c)	共通表示部	L 3.5
d)	環境設定	L 3.6

3.4 機能切換·機能表示部

本ソフトウェアは以下の機能を切り換えて利用することができます。 機能切換タブをクリックすると、機能表示部に各機能の項目が表示されます。

- 基本コントローラ(12 4)
- シーケンス(L3 5)

3.5 共通表示部

共通表示部はすべての機能に共通して表示されます。

3.5.1 オペレーションバー

出力オン/オフの切り換えや各種機能の操作ボタンがあります。

図3-5 オペレーションバー

3.5.2 ステータスモニタ

現在接続されている機器の状態を表示します。

0V	OC RMS	ОС РК	RTCNTerr	DC OV	DC UV	ОН	Freq
UNLOCK	SAT_LMT	Watt	Irms	lpk			

図3-6 ステータスモニタ

3.5.3 ステータスバー

機器の接続状態や本ソフトウェアの状態を表示します。

接続モデル: APS-1102A	接続方式: VISA	編集モード	経過時間	
		図3-7 ステー	タスバー	

- 接続モデル
 環境設定で指定した,機器のモデル名を表示します。
- 接続方式
 環境設定で指定した,機器との接続方式を表示します。
- 編集モード/実行モード シーケンスの実行モードを表示します(12) 5.4.7)。
- 経過時間
 シーケンスを開始してからの経過時間を表示します。

3.6 環境設定

本ソフトウェアの使用を開始するときに環境設定を行ってください。画面右上の環境設定ボタンをク リックすると,図 3-8の環境設定ダイアログが表示されます。

環境設定は、本ソフトウェアが起動している時はいつでも変更できますが、環境設定を変更すると 編集中のパラメタ等がクリアされます。

System Setting	
〜モデル設定 ― モデル	Ver. 1.00
通信設定 通信種類	VISA -
OK	キャンセル

図3-8 環境設定ダイアログ

3.6.1 通信種類

接続する機器との通信種類を指定します。使用するドライバソフトウェア: VISA を選択します。設定 した通信種類は、ステータスバーに表示されます(1273.5.3)。

3.7 エラーメッセージ

本ソフトウェアを使用中に,エラーメッセージがダイアログ表示されることがあります。その場合は,メ ッセージの指示に従って対応してください。

4. 基本コントローラ

4.1	ウィンドウ各部の名称
4.2	各部の操作
4.3	機器設定ファイル
4.4	メモリ
4.5	ステータス
4.6	ロギング
4.7	任意波形編集23
4.8	通信未接続状態での制約

4.1 ウィンドウ各部の名称

Г) <i>I</i> – Š	📼 コントロールソフト	ウエア for APS-1102A		-0	
	a) $x = 1 - N - C$	基本コントローラ	シーケンス		環	竟設定
Ī	b) ツールバー	ファイルED メモリM) ステータス(S) ツール(I) 🍫 💊 📚 🎎	· · · · · · · · · · · · · · · · · · ·	Power Supply and Power Test Pr Control Soft	odukts Ware APS-1102A
	d) 基本設定	出力モード	AC-INT -	出カレンジ 100V 	200V	f) リミッタ設定
Γ	e)出力設定	🗕 出力設定			電流リミッタ設定	
L		交流電圧	0.0 [Vrms]		実効値 10.5 [Arms]	
		直流電圧	[V]		下限 上限 ピーク値 -42.0 42.0	[Apk]
		周波数	50.0 [Hz]		電圧設定制限	
		開始位相	0.0 [deg]	外部信号源	ピーク値 -220.0 220.0	Vpk]
		波形	SIN -	外部入力ゲイン	周波数設定制限 1.0 550.0	c) 更新·設定ボタン
g)	オペレーションバー	-]			更新設定	
		OUTPUT		OV OC UNLOCK SAT	RMS OC PK RTCNTerr DC OV DC UV OH LMT Watt Irms Ipk	Freq
		接続モデル: APS-110	2A 接続方式: VISA			

図4-1 基本コントローラウィンドウ

a)	メニューバー	🕼 4.2.1
b)	ツールバー	(a 4.2.2
c)	更新・設定ボタン	(a 4.2.3
d)	基本設定	(a 4.2.4
e)	出力設定	(a 4.2.5
f)	リミッタ設定	(a 4.2.6
g)	オペレーションバー	(a 4.2.7

4.2 各部の操作

ここでは,通信接続状態での操作を前提に,各部の操作方法を説明します。通信未接続時状態では,機器の状態が取得できないため,一部の機能が制約されます(1274.8)。

機器の状態により,各項目の設定を行うとエラーメッセージが表示されることがあります。その場合 は、メッセージの内容に従って対応してください。

4.2.1 メニューバー

基本コントローラのメニュー構成を図 4-2に示します

図4-2 基本コントローラのメニュー構成

4.2.2 ツールバー

基本コントローラのツールバーでは、図 4-3の各アイコンをクリックすると、対応した機能を簡単に実 行することができます。

図4-3 基本コントローラのツールバー

a)	開く	機器設定ファイルを開きます。
b)	上書き保存	機器設定ファイルを上書き保存します。
c)	ストア	メモリストア画面を表示します。
d)	リコール	メモリリコール画面を表示します。
e)	ロギング	ロギング画面を表示します。
f)	任意波形編集	任意波形編集画面を表示します。

GWINSTEK

4.2.3 更新・設定ボタン

図4-4 更新・設定ボタン

a) 更新ボタン 基本設定・出力設定・リミッタ設定を接続している機器から取得し、本ソフトウェアウィンドウの設定値を更新します。
 b) 設定ボタン 本ソフトウェアウィンドウに入力されている基本設定・出力設定・リミッタ設定を、接続している機器に設定します。

4.2.4 基本設定

a)	b)
出力モード AC-INT Y	出力レンジ ◎ 100 ○ 200
	図4-5 基本設定
a) 出力モード	右の▼をクリックすると開く出力モードー覧から選択しま
b) 出力レンジ	す。 ラジオボタンをクリックして選択を切り換えます。

出力モード又は出力レンジの設定を変更すると、図 4-6の確認ダイアログが表示されます。 選択すると、出力設定及びリミッタ設定の各設定値は本ソフトウェアが持っているデフォルト値にクリア されます。
いいえを選択すると、出力モード又は出力レンジの変更を取り消します。

図4-6 設定クリア確認ダイアログ

出カモード又は出カレンジの設定を変更してから設定ボタンをクリックすると, 接続している機器の 設定状態によっては設定の切り換えに時間がかかることがあります。

4.2.5 出力設定

出力に関する項目の設定を行います。設定領域が灰色の項目は、その出力モードで設定できない 項目です。

出力設定 交流電圧	0.0 [Vrms]		
直流電圧	[V]		
周波数	50.0 [Hz]		
開始位相	0.0 [deg]	外部信号源	*
波形	SIN 🗸	外部入力ゲイン	

図4-7 出力設定

数値を入力する設定項目で,設定範囲外の値を入力すると,図 4-8のようなエラーダイアログが表示されます。ダイアログに示される設定範囲内の値を入力してください。設定範囲は各機種ごとに異なります。設定範囲の詳細は機器の取扱説明書を参照してください。図 4-8は APS-1102A におけるエラーダイアログ例です。

ガイダンス	
<u>^</u>	0.0 ~ 155.0の範囲で入力してください。
	ОК

図4-8 設定範囲のエラーダイアログ例

4.2.6 リミッタ設定

リミッタ設定では、電流リミッタと設定範囲制限の設定を行います。図 4-9は APS-1102A におけるリ ミッタ設定例です。

電流 県ッタ	改定				
実効値	10.5 [Arms]				
ピーク値	下限 上限 -42.0 42.0				
電圧設定制限					
ピーク値	-220.0 220.0 [Vpk]				
周波数設定	: 制限 1.0 550.0 [Hz]				
図4-9 リミッタ設定					

リミッタ設定でも、数値を入力する設定項目に設定範囲外の値を入力すると、図 4-8のようなエラー ダイアログが表示されます。設定範囲は各機種ごとに異なります。設定範囲の詳細は機器の取扱説 明書を参照してください。

4.2.7 オペレーションバー

オペレーションバーの OUTPUT をクリックすると、接続されている機器の出力オン/オフを切り換えます。OUTPUT ボタンの表示は図 4-10のように変化します。

図4-10 OUTPUT ボタンの表示

4.3 機器設定ファイル

本ソフトウェアが扱う基本コントローラ設定のファイル形式は、次の1種類です。

■機器設定ファイル(拡張子"rmt")

出力オン/オフの設定は除く、基本コントローラの設定内容が保存されています。本ソフトウェアで、 読み出し、保存ができます。

4.3.1 名前を付けて保存

新規に機器設定ファイルを保存します。次の2通りの方法によって、「名前を付けて保存」ダイアロ グが表示されます。新規作成のデータでは、上書き保存操作をしても「名前を付けて保存」操作になり ます。

● メニューバーから、[ファイル(F)]-[名前を付けて保存(A)]と選択します。

● キーボードで, Alt, F, A と操作します。

4.3.2 上書き保存

既存の機器設定ファイルに上書き保存します。次の4通りの方法があります。新規作成のデータで 上書き保存操作をすると、「名前を付けて保存」操作になります。

- ●メニューバーから, [ファイル(F)]-[上書き保存(S)]と選択します。
- キーボードで, Alt, |F|, |S| と操作します。
- キーボードで, Ctrl+S と操作します。
- ツールバーの「上書き保存」アイコン(1274.2.2)をクリックします。

4.3.3 ファイルの読み出し

機器設定ファイルを開きます。次の4通りの方法によって、「ファイルを開く」ダイアログが表示されます。

- メニューバーから、 [ファイル(F)] [開く(O)]と選択します。
- キーボードで, Alt, F, O と操作します。
- キーボードで, Ctrl+O と操作します。
- ツールバーの「開く」アイコン(『2 4.2.2)をクリックします。

4.4 メモリ

機器と通信し、メモリ機能を操作する方法を説明します。

Store	Recall		
Memory No. 1	Memory No. 1		
OK Cancel	OK Cancel		

図4-11 メモリストア/リコールダイアログ

4.4.1 ストア

次の2通りの方法によって、「メモリストア」ダイアログが表示されます。「メモリストア」ダイアログの「Memory No.」で内部メモリ番号を指定し、OK」を選択すると、機器でストア処理が実行されます。

- メニューバーから、 [メモリ(M)] [ストア]と操作します。
- ツールバーの「ストア」アイコン(L3 4.2.2)をクリックします。

4.4.2 リコール

次の2通りの方法によって、「メモリリコール」ダイアログが表示されます。「メモリリコール」ダイアロ グの「Memory No.」でメモリ番号を指定し、OK を選択すると、機器でリコール処理が実行されます。 機器のリコール処理終了後に、本ソフトウェアは機器へ問い合わせを行い、本ソフトウェアウィンドウの 各設定値をリコールした値に更新します。

● メニューバーから, [メモリ(M)] - [リコール]と操作します。

● ツールバーの「リコール」アイコン(127 4.2.2)をクリックします。

---- コメント ------

● 出力オン状態でリコール操作を行うとエラーとなります。

4.4.3 リセット

メニューバーから、 [メモリ(M)] – [リセット]と操作します。接続している機器のメモリを工場出荷時の設定にリセットします。

● 出力オン状態でリセット操作を行うとエラーとなります。

4.5 ステータス

4.5.1 ステータスモニタ

本ソフトウェアは、出力がオンの間、約2秒間隔で、接続している機器にステータスの問い合わせを 行い、ステータスモニタの表示を更新します。表 4-1 ステータス表示一覧にモニタするステータスの一 覧を示します。

機器にステータスを問い合わせた結果,該当するステータスの状態にあるときに(オン状態),点灯 表示(赤色又は橙色)にします。図 4-12にステータスの表示例を示します。

表示色が赤のステータスがオン状態のときは、機器本体で保護機能が働き、「ワーニング表示」状態となっています。このとき、ステータスをクリア(CF 4.5.2)せずに、出力設定(CF 4.2.5)やリミッタ設定(CF 4.2.6)の変更を行おうとすると、エラーとなります。

表記	内容	オン状態の 表示色	備考
OV	出力過電圧保護	· · · 赤	
OC RMS	出力実効値電流保護		APS-1102 は平均値
OC PK	出カピーク電流保護		
DC OV	直流電源部過電圧保護		
DC UV	直流電源部不足電圧保護		
RTCNTerr	リアルタイム制御保護		APS-1102 のみ
OH	内部温度異常保護		
Freq	外部同期信号周波数範囲超過		
UNLOCK	外部同期信号アンロック		
Watt	電カリミッタ動作	l	
Irms	電流実効値リミッタ動作	橙	APS-1102 は平均値
lpk	電流ピーク値リミッタ動作		
SAT_LMT	操作量飽和リミッタ動作		APS-1102のみ

表4-1 ステータス表示一覧

オフ状態 オン状態

図4-12 ステータス表示例(出力過電圧保護)

4.5.2 クリア

メニューバーから、 [ステータス(S)] - [クリア]と操作します。本ソフトウェアウィンドウのステータスモニタ表示を消灯状態にするとともに、機器のワーニング要因の解除を行います。

ただし、機器の状態により、全てのワーニング要因が解除されない場合があります。

G≝INSTEK

4.6 ロギング

計測値ロギングウィンドウ(0366)を表示します。次の2通りの方法があります。

- メニューバーから, [ツール(T)] [ロギング]と操作します。
- ツールバーの「ロギング」アイコン(127 4.2.2)をクリックします。

4.7 任意波形編集

任意波形編集ツール(037)を表示します。次の2通りの方法があります。

- メニューバーから, [ツール(T)]-[波形生成]と操作します。
- ●ツールバーの「任意波形編集」アイコン(03 4.2.2)をクリックします。

4.8 通信未接続状態での制約

基本コントローラでは, 設定, 更新や OUTPUT をクリックしたときなど, 通信の必要がある操作を行った時に, 接続されている機器との通信を試みます。通信が確立できた場合, 指定された操作を機器に対して行います。通信が確立できなかった場合, 図 3-3 のダイアログが表示されます。

5. シーケンス

5.1	ウィンドウ各部の名称	25
5.2	各部の操作	26
5.3	シーケンスデータファイル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
5.4	実行	34
5.1 ウィンドウ各部の名称

図5-1 シーケンスウィンドウ

b) พ_ม.เ. แระเว	.2
U) 7 / / / / Us 5.2	
c) 基本設定 🕼 5.2	.3
d) ステップ操作 🖬 🖬 5.2	.4
e) ステップ遷移パラメタ 375.2	.5
f) ステップ実行パラメタ 🕼 5.2	.6
g) オペレーションバー 🕼 5.2	.7

5.2 各部の操作

5.2.2 ツールバー

シーケンスのツールバーでは、図 5-3の各アイコンをクリックすると、対応した機能を簡単に実行することができます。

a) 新規作成 シーケンス設定を新規作成します。

- b) 開く シーケンス設定ファイルを開きます。
- c) 上書き保存 シーケンス設定ファイルを上書き保存します。
- d) 任意波形編集 任意波形編集ツールを表示します。
- 5.2.3 基本設定

■出力モード・出力レンジ

出力モード AC-INT 出力レンジ ③ 100 / ○ 200 /

出力モード又は出力レンジを変更すると、図 5-5のダイアログが表示されます。はいを選択すると、 現在の各設定値はクリア(デフォルト値に設定)されます。クリアされた設定を元に戻すことはできません。設定がクリアされる前に、現在の設定を保存しておきたい場合は、いいえを選択して変更をキャンセルし、設定をファイルに保存してください(2006)5.3)。

図5-5 設定クリア確認ダイアログ

出カモード, 出カレンジ設定の変更を行うと, 機器の設定状態により, 切り換えに時間がかかること があります。

図5-4 基本設定(出力モード・出力レンジ)

G^{^wINSTEK}

5.2.4 ステップ操作

ステップ(行)の追加,挿入,削除,移動,コピーの方法を説明します。

行追加	行挿入	行削除	

図5-6 ステップ操作ボタン

---- コメント ------

- ジャンプ先やブランチステップに設定されているステップのステップ番号が、これらの操作によって変わったとき、ジャンプ先やブランチステップのステップ番号も自動的に更新され、ステップの依存関係は維持されます。
- ●ジャンプ先やブランチステップに設定されているステップを削除した場合は、図 5-7のダイアログが表示されます。はいを選択するとステップが削除され、ジャンプ先やブランチステップは、無効となります。いいえを選択すると、ステップの削除はキャンセルされます。

ガイダンス	
	指定したジャンプ先を削除します。よろしい ですか?
	はい いいえ

図5-7 ステップ削除の確認ダイアログ

G≝INSTEK

■行追加

最後の行(ステップ)の後ろに新しい行を追加します。次の3通りの方法があります。

- ●メニューバーから、[編集(E)]-[行追加(S)]と選択します。
- キーボードで, Alt, E, S と操作します。
- ステップ操作の「行追加」ボタンをクリックします。

■行挿入

カーソルがある行(ステップ)の前に新しい行を追加します。次の3通りの方法があります。

- ●メニューバーから, [編集(E)]-[行挿入(I)]と選択します。
- キーボードで, Alt, E, I と操作します。
- ステップ操作の「行挿入」ボタンをクリックします。
- ■行削除

カーソルがある行(ステップ)を削除します。次の3通りの方法があります。

- ●メニューバーから、[編集(E)]-[行削除(E)]と選択します。
- キーボードで, Alt, E, E と操作します。
- ステップ操作の「行削除」ボタンをクリックします。
- ∎行 UP

カーソルがある行(ステップ)を上の行と交換します。次の3通りの方法があります。

- ●メニューバーから, [編集(E)]-[行 UP(U)]と選択します。
- キーボードで, Alt, E, U と操作します。
- ステップ操作の「▲」ボタンをクリックします。

∎行 DOWN

カーソルがある行(ステップ)を下の行と交換します。次の3通りの方法があります。

- メニューバーから, [編集(E)] [行 DOWN(U)]と選択します。
- キーボードで, Alt, E, D と操作します。
- ●ステップ操作の「▼」ボタンをクリックします。

∎⊐ピー

選択された行範囲やセル範囲の設定データをクリップボードにコピーします。次の3通りの方法があります。

- ●メニューバーから、[編集(E)]-[コピー(U)]と選択します。
- キーボードで, AIt, E, C と操作します。
- キーボードで, Ctrl+C と操作します。

■貼り付け

選択された行範囲やセル範囲にクリップボードの設定データを貼り付けます。次の3通りの方法が あります。

- ●メニューバーから、[編集(E)]-[貼り付け(P)]と選択します。
- キーボードで, Alt, E, P と操作します。
- キーボードで, Ctrl+V と操作します。

---- コメント ------

●貼り付け先として選択する範囲は、クリップボードにコピーしたときのデータ範囲と、行数と列項目を一致させてください。データ範囲が異なると、図 5-8のエラーダイアログが表示されます。

ガイダンス	
<u>^</u>	コピー元とコピー先の形式が違います。
	ок

図5-8 データコピーのエラーダイアログ

G≝INSTEK

5.2.5 ステップ遷移パラメタ

■設定値の入力

セルを選択し, 値を入力します。設定範囲外の値を入力すると, エラーダイアログが表示されます。 ダイアログに従って, 範囲内の値を入力してください。

「終端」は、セルをクリックして開くコンボボックスから選択します。

■「有効/無効」パラメタの入力

「終了位相」、「ジャンプ先」および「ブランチ」のセルを選択すると、有効/無効を設定するラジオボ タンが設定可能になります。「有効」にすると、図 5-9のように、設定できるようになります。

■設定値のクリア

設定値をデフォルト値に戻します。次の2通りの方法があります。

- ●メニューバーから、[編集(E)]-[初期化(I)]と選択します。
- キーボードで, Ctrl+ I と操作します。

図5-9 終了位相の有効・無効

5.2.6 ステップ実行パラメタ

■設定値の入力

セルを選択し, 値を入力します。設定範囲外の値を入力すると, エラーダイアログが表示されます。 ダイアログに従って, 範囲内の値を入力してください。

■動作種別の入力

動作種別(入力値/保持/スイープ)を設定できる設定値のセルを選択すると、動作種別のラジオ ボタンが設定可能になります。このラジオボタンを切り換えることにより、動作種別を設定することがで きます(図 5-10)。セル内には、設定されている動作種別のアイコンが表示されます。

図5-10 動作種別の設定

5.2.7 オペレーションバー

図5-11 シーケンスのオペレーションバー

シーケンスのオペレーションバーでは、出力のオン/オフ切り換えの他に、シーケンスの「モード切換」、「開始」、「停止」、「ホールド」、「ブランチ 0」、「ブランチ 1」の各操作を行うことができます。

5.3 シーケンスデータファイル

本ソフトウェアが扱うシーケンスデータのファイル形式は、下記の1種類があります。

■シーケンス設定ファイル(拡張子".sqd")

本ソフトウェアで, 読み出し, 保存ができます。

5.3.1 名前を付けて保存

新規にシーケンス設定ファイルを保存します。次の2通りの方法によって、「名前を付けて保存」ダイ アログが表示されます。新規作成のデータでは、上書き保存操作をしても「名前を付けて保存」操作に なります。

● メニューバーから、[ファイル(F)]-[名前を付けて保存(A)]と選択します。

● キーボードで Alt, F, A と操作します。

5.3.2 上書き保存

既存のシーケンス設定ファイルに上書き保存します。次の4通りの方法があります。新規作成のデ ータで上書き保存操作をすると、「名前を付けて保存」操作になります。

- メニューバーから、[ファイル(F)]-[上書き保存(S)]と選択します。
- キーボードで Alt, F, S と操作します。
- キーボードで Ctrl+S と操作します。
- ●ツールバーの「上書き保存」アイコン(12 5.2.2)をクリックします。

5.3.3 ファイルの読み出し

シーケンス設定ファイルを開きます。次の4通りの方法によって、「ファイルを開く」ダイアログが表示 されます。

- ●メニューバーから、 [ファイル(F)] [開く(O)]と選択します。
- キーボードで Alt, F, O と操作します。
- キーボードで Ctrl + O と操作します。
- ツールバーの「開く」アイコン(『2 5.2.2)をクリックします。

5.4 実行

シーケンスの開始、停止等の制御を行う方法を説明します。

5.4.1 開始

実行モード且つ出力オン状態でのみ可能です。次の3通りの方法があります。

- メニューバーから[実行(R)]-[開始(S)]と選択します。
- キーボードで Alt, R, S と操作します。
- ●オペレーションバーの「開始」ボタン(1275.2.7)をクリックします。
- 5.4.2 停止

次の3通りの方法があります。

- メニューバーから[実行(R)]-[停止(E)]と選択します。
- キーボードで Alt, R, E と操作します。
- ●オペレーションバーの「停止」ボタン(1分 5.2.7)をクリックします。

5.4.3 ホールド

次の3通りの方法があります。

- メニューバーから[実行(R)]-[ホールド(H)]と選択します。
- キーボードで Alt, R, H と操作します。
- オペレーションバーの「ホールド」ボタン(CF 5.2.7)をクリックします。

5.4.4 ブランチ

ブランチ0について示します。ブランチ1も同様です。次の2通りの方法があります。

- メニューバーから[実行(R)] [ブランチ 0]と選択します。
- オペレーションバーの「ブランチ 0」ボタン(12 5.2.7)をクリックします。

<u>G<u></u>UINSTEK</u>

5.4.5 出力オン

次の3通りの方法があります。

- ●メニューバーから[実行(R)]-[出力 ON(N)]と選択します。
- キーボードで Alt, R, N と操作します。
- オペレーションバーの OUTPUT (CF 5.2.7)をクリックします。

5.4.6 出力オフ

次の3通りの方法があります。

- メニューバーから[実行(R)]-[出力 OFF(F)]と選択します。
- キーボードで Alt, R, F と操作します。
- オペレーションバーの OUTPUT (CF 5.2.7)をクリックします。
- 5.4.7 実行モードの切り換え

編集モード/実行モードを切り換えます。次の2通りの方法があります。

- ●メニューバーから[実行(R)]-[モード切換]と選択します。
- $\pi^{\nu} = \pi^{\nu} = 5.2.7$ (Large 5.2.7)

6. 計測器ロギング

6.1	計測値ロギング「	ウィンドウを開く・閉じる	

- 6.5 計測値ログファイル 40

G≝INSTEK

- 6.1 計測値ロギングウィンドウを開く・閉じる
- 6.1.1 ロギングウィンドウを開く 次の2通りの方法があります。
 - 基本コントローラメニューバーから, [ツール] [ロギング]と選択します。
 - 基本コントローラツールバーの「ロギング」アイコン(13 4.2.2)をクリックします。
- 6.1.2 ロギングウィンドウを閉じる

ロギングウィンドウ右上の区をクリックします。

6.2 ウィンドウ各部の名称

図6-1 計測値ロギングウィンドウ

a)	メニューバー	L 6.3.1
b)	ツールバー	(. 3.2
C)	ログ表示部	IJ 6.4

6.3 各部の操作

6.3.1 メニューバー

計測値ロギングのメニュー構成を図 6-2に示します。

6.3.2 ツールバー

計測値ロギングのツールバーでは、図 6-3のアイコンをクリックすると、対応した機能を簡単に実行 することができます。

図6-3 計測値ロギングのツールバー

- a) ロギング開始 ロギングを開始します。
- b) ロギング停止 ロギングを停止します。

6.3.3 開始・停止・クリア

∎開始

次の2通りの方法があります。

- メニューバーから, [ロギング]-[開始]と選択します。
- ツールバーから、「ロギング開始」アイコンを選択します。

∎停止

次の2通りの方法があります。

- メニューバーから、 [ロギング] [停止]と選択します。
- ツールバーから、「ロギング停止」アイコンを選択します。

■ログクリア

メニューバーから、 [ロギング] – [ログクリア]と選択すると、 計測値ロギングウィンドウのログがクリ アされます。 ロギングファイルのログはクリアされません。

6.3.4 ロギング条件

計測項目の選択,計測値ログファイルの設定およびロギングの時間間隔を設定します。メニューバーから,[設定(S)]-[ロギング条件]と選択すると,「ロギング設定」ダイアログが表示されます。

ロギング設定	
計測値表示	RMS -
□ ロギングデータ ——	
□ ファイルに保存 保存先	7
ロギング間隔	2 [sec]
	OK キャンセル

図6-4 ロギング設定ダイアログ

■計測値表示

表示する計測値を選択します。[HC1], [HC2], [HC3], [HC4]を選択した場合, 以下の次数の高 調波電流計測値をロギングします。

HC1:1次~10次 HC2:11次~20次

HC3:21 次~30 次

HC4:31 次~40 次

高周波電流計測値のロギングでは、「計測値表示」で選択した次数の計測値のみが有効です。そ れ以外の次数の計測値も表示されますが、値は不定です。

■ファイルに保存

チェックボックスをチェック状態にすると、計測値ログファイルが「保存先」で指定したフォルダに作成・保存されます(CF) 6.5)。

■保存先

計測値ログファイルを保存するフォルダを指定します。

G^{^wINSTEK}

■ロギング間隔

計測値ロギングの時間間隔を,1秒~300秒の範囲で,1秒単位で指定します。

- - ロギング間隔の精度は保証しておりません。

6.4 ログ表示部

ロギングを開始すると、ログ表示部に、指定したロギング間隔で、1 行ずつログが作成されていきます。

6.5 計測値ログファイル

ロギング条件(12)6.3.4)で「ファイルに保存」を有効に設定している場合, ロギングを開始すると, 「保存先」で指定したフォルダに, 計測値ログファイルが作成され, ログが追記されていきます。計測値 ログファイルのフォーマットを以下に説明します。

■ファイル名

ロギングを開始した時の時刻情報から、YYYYMMDD_HH_MM_SS.txt となります。

■ファイルフォーマット

カンマ区切りのテキストファイルです。1 行目が項目名, 2 行目以降が計測値ログです。

- ●ログ表示部のデータをクリップボードにコピーしたり、ファイルに保存したりすることはできません。ログをファイルに残す必要がある場合は、ロギング条件(CF 6.3.4)で「ファイルに保存」を 有効に設定し、計測値ログファイルを使用してください。
- ●ログの表示またはファイルへの保存は最大 3600 行です。表示部が 3600 行を超えた場合、最も古いデータの行が削除されて新しいログが追加されます。ファイルへの保存が 3600 行を超えた場合、新しいファイルが作成されてそのファイルに記録されます。
- ●計測値ログファイルを保存するハードディスクの空き容量によって、ロギングを停止する場合があります。
- シーケンス中はロギングができません。

7. 任意波形編集

7.1 概要
7.2 任意波形編集ウィンドウを開く・閉じる43
7.3 ウィンドウ各部の名称44
7.4 各部の操作
7.5 波形表示部
7.6 ファイル操作
7.7 波形の印刷
7.8 新規任意波形編集
7.9 新規補間編集 ······64
7.10波形間演算 69
7.11 圧縮/伸張
7.12システム設定
7.13メモリ

7.1 概要

この章では、「任意波形編集ツール」の基本的な操作や機能をご理解いただくために、図 7-1に示す ような、いくつかの波形作成例に沿って説明します。

実際に操作しながらお読みいただくと、より容易にご理解いただけます。

図7-1 波形作成例

---- コメント ------

本ソフトウェアでは, 波形データを 16 ビット(-32768 ~ +32767)で扱っていますが, 機器の有 効範囲は 15 ビット(-16384 ~ +16383)となります。このため, 本ソフトウェアでは, 波形転送 時に 15 ビット相当へ圧縮しています。

- 7.2 任意波形編集ウィンドウを開く・閉じる
- 7.2.1 任意波形編集ウィンドウを開く
 - 次の3通りの方法があります。
 - 基本コントローラメニューバーから、[ツール]-[波形生成]と選択します(03 4.2.1)。
 - ●基本コントローラツールバーの「任意波形編集」アイコン(1274.2.2)をクリックします。
 - ●シーケンスツールバーの「任意波形編集」アイコン(12 5.2.2)をクリックします。

7.2.2 任意波形編集ウィンドウを閉じる

任意波形編集の終了操作を行います。次の2通りの方法があります。終了操作を行うと、図7-2の確認ダイアログが表示されます。OKを選択すると、任意波形編集ウィンドウが閉じます。

- ●メニューバーから、[ファイル(F)]-[終了(X)]と選択します。
- 任意波形編集ウィンドウ右上の×をクリックします。

ガイダンス	
2	波形生成を終了します。よろしいですか?
	はい いいえ

図7-2 任意波形編集の終了確認ダイアログ

7.3 ウィンドウ各部の名称

タイトルバーには、波形データの読み出し/書き込みを行ったファイル名が表示されます。まだファ イルの読み書きを行っていないときは、[<Untitled>]と表示されます。

図7-3 任意波形編集ウィンドウ

a)	メニューバー	(.............
b)	ツールバー	1 7 .4.2
c)	操作パネル部	I 7.4.3
d)	波形表示部	(] 7.4.4

7.4 各部の操作

ここでは、通信接続状態での操作を前提に、各部の操作方法を示します。

通信未接続時状態では,機器との通信が不能であるため,通信を要求する操作の実行はできません。

機器側の状態により、各項目の設定を行うとエラーメッセージが表示されることがあります。メッセージの内容に従って対応してください。

7.4.1 メニューバー

任意波形編集のメニュー構成を図 7-4に示します。

図7-4 任意波形編集のメニュー構成

7.4.2 ツールバー

任意波形編集のツールバーでは、図 7-5の各アイコンをクリックすると、対応した機能を簡単に実行 することができます。

図7-5 任意波形編集のツールバー

- a) 開く 波形情報ファイルを開きます。
- b) 上書き保存 波形情報ファイルを上書き保存します。
- c) メモリ転送 メモリ転送ダイアログを表示します。
- d) メモリクリア メモリクリアダイアログを表示します。

7.4.3 操作パネル部

操作パネル部には、現在選択されている操作パネルが表示されます。 任意波形編集ツール起動直後や各操作終了後には、項目選択パネルとなります。

図7-6 操作パネル画面遷移

7.4.4 波形表示部

波形表示部には,作成した波形のイメージや,各種座標データ等が表示されます。 詳細な波形の生成や操作方法については,波形表示部(CP 7.5)を参照してください。

7.5 波形表示部

7.5.1 波形表示領域

現在作成してある波形データは、常に波形表示領域に表示されます。

波形表示領域には波形データの他に、表示領域の大きさを示す座標値や、各種操作を行う際に利用されるマーカ(CF)7.5.3)、波形の比率を確認するためのグリッド(CF)7.5.6)等が描画されます。

7.5.2 表示倍率

波形表示領域では、縦横の表示倍率を変更することにより、表示波形を拡大できます。

■縦軸の表示倍率

縦方向拡大倍率は, [1:1](波形全体を表示), [1:2](波形の半分を全体に拡大表示), [1:4]... [1:256]まで可能です。

縦スクロールバー上の▼ボタンをクリックし、表示される倍率リストからクリックして選択してください。 倍率リスト表示中に、↓キーか→キーを押すと拡大率上昇、↑キーか←キーを押すと拡大率下降と なります。Home キーでは拡大なしに、 End キーで最大倍率になります。

■横軸の表示倍率

横方向拡大倍率は, [1:1](波形全体を表示), [1:2](波形の半分を全体に拡大表示), [1:4]... [1:128]まで可能です。

横スクロールバー右の▼ボタンをクリックし、表示される倍率リストからクリックして選択してください。 倍率リスト表示中に、↓キーか→キーを押すと拡大率上昇、↑キーか←キーを押すと拡大率下降と なります。Home キーでは拡大なしに、End キーで最大倍率になります。

■スクロール

縦/横の倍率が[1:2]以上になると、スクロールバーのスライドが可能になります。

スクロールを行うと,波形表示領域の座標値が変化するので,確認したい座標値へスクロールバー をマウスでドラッグし,波形の他の部分を観察してください。

7.5.3 マーカ

マーカは,各種の波形編集,作成に対して,波形の横方向の範囲を選択しておくために使用します。 また,横方向の位置を指定して,波形の縦の値を読む目的でも使用します。

マーカは、波形表示領域の中に赤と青の縦線で表示されます。

■マーカの操作

任意波形編集ツールで使用するマーカは、Aマーカ(赤)とBマーカ(青)の二つです。

A マーカを B マーカの右側に設定することはできません。A マーカは、常に B マーカの左、又は同じ 位置にあります。各マーカの位置は、それぞれの色が示す[マーカ:]欄に対応した、[X]欄に表示され ます。マーカ位置に相当する波形の値は、[Y]欄に表示されます。

■マーカの移動(マウスドラッグ)

マーカを移動するには、マウスドラッグと数値指定の二つの方法があります。

マウスカーソルをマーカに重ねると、マウスカーソルの形が☆から⇔に変化します。この状態でドラ ッグすることによって、マーカを移動させます。マーカが左右両端にあるときは、マーカが見にくくなりま すが、波形表示領域上部のマーカフラッグでも同様にマーカを移動させることができます。

マウスドラッグによるマーカ移動は,波形データのアドレスを単位として移動します。表示上の1ドットが複数のアドレスに相当するような表示倍率の時は,表示上の1ドットに相当するアドレスをステップとして移動します。

■マーカの移動(数値設定)

より高分解能のマーカ位置指定を行うには、マーカの位置を直接数値で入力します。

A マーカに対応した[X]項目をクリックするか, Alt+Aと操作することによって, A マーカの位置表示部が選択されます。ここで数値を入力し, Tabキーを押すと, 指定位置にAマーカがジャンプします。

より高分解能のマーカ位置指定を行うには、マーカの位置を直接数値で入力します。

同様に、Bマーカに対応した[X]項目をクリックするか、Alt+Bと操作し、Bマーカの位置表示部で 数値を入力して Tab キーを押すと、指定された位置に Bマーカがジャンプします。

数値設定を使用すれば、設定/表示分解能の範囲で自由にマーカ位置を指定できます。

■マーカ連動モード

[マーカを連動する]のチェック状態によって、AマーカとBマーカは独立/連動を切り換えて移動させることができます。

[マーカを連動する]のチェックを ON 状態にすることによって, A マーカと B マーカが連動するようになります。A マーカと B マーカの横方向の差(マーカ間距離)は, [距離 dX(-)]の右に表示されます。

いずれかのマーカを移動させると、距離が一定のまま、もう一方のマーカも移動します。

[距離 dX(-)]の右をクリックするか Alt + と操作し, 数値を入力して Tab キーを押すと, 指定された差になるように, B マーカがジャンプします。

- ■マーカの影響範囲
 - マーカによる範囲選択は、下記の操作に影響を与えます。
 - 波形のコピー/カット/貼り付けの範囲(57.5.4)
 - 任意波形編集を行う範囲(CF 7.8)
 - ●補間で波形を生成する範囲(027.9)
 - 圧縮/伸張を行う範囲(1277.11)
 - 波形間の演算を行う範囲(1277.10)

厳密には、マーカは設定/表示されている横軸位置([X]欄右の数値表示)の"直前"に存在している と考えてください。

例えば、マーカAの横軸位置が5、マーカBの横軸位置が10のとき、選択範囲は5≦X<10となります。マーカAは5の直前にいますので、5はマーカAとBの間に入っています。マーカBは10の 直前にいますので、10はマーカAとBの間に入りません。

7.5.4 波形操作

■アンドゥとリドゥ

任意波形編集ツールでは、波形編集操作を行った後で、波形データを一つ前の状態に戻すこと(アンドゥ)ができます。[編集(E)]-[元に戻す(U)](Alt, E, U),又はCtrl+Uと操作すると、一つ前の状態に戻ります。

前の状態に戻した後で、その操作を取り消す(リドゥ)には、[編集(E)]-[やり直す(Y)](Alt, E, Y)、又は Ctrl+Yと操作します。

■切り取り/コピー/貼り付け/削除

任意波形編集ツールでは、波形データに対して切り取り/コピー/貼り付け/削除の操作を行うことができ、任意に波形を編集することができます。

● 切り取り

[編集(E)] - [切り取り(T)] (Alt, E, T又はCtrl+X)

- コピー
 - [編集(E)]-[コピー(C)](Alt, E, C又はCtrl+C)
- ●貼り付け
 [編集(E)] [貼り付け(P)] (Alt), E, P又は (Ctrl)+(V))
- 削除
 - [編集(E)]-[削除(D)](Alt, E, D又はCtrl+D)

切り取りやコピーを実行すると、選択部分の波形データがクリップボードに送られます。

選択部分の波形データは、16ビット(0~+65535)相当のデータを、1行1データの数字列としてク リップボードに送られます。元が負の値は、65536が加算されて正の値に変換されています。

この内容は、テキストエディタや表計算ソフトウェア等にそのまま貼り付けることも可能ですし、自分 自身や、複数起動されている他の「任意波形編集ツール」に貼り付けることもできます。

図7-7 クリップボード操作

7.5.5 任意波形編集例

波形のコピーと貼り付け機能の例として,全波整流波形を作成します。

- 手順 1: 画面左上のボタンをクリックします。[ツール(T)]-[新規波形生成(W)]と操作しても、同じ結果となります。
- 手順 2: 初期状態では,正弦波が選択されていますので,そのまま全ページ OK(K)ボタンをクリックして,波形表示画面に戻ります。
- 手順 3: Bマーカを波形中心に移動します。 画面右下に[4096.000]と表示されています。 Bマーカに対応する[X]の数字領域に,4096の半分[2048]と設定し, Tab キーを押しま <u>す。</u>_____
- 手順 4: Ctrl キーを押しながらCキーを押します。[編集(E)] [コピー(C)]と操作しても、同じ結果 となります。これで、マーカ A~B の間、すなわち波形前半のデータがクリップボードにコピ ーされました。
- 手順 5: [マーカを連動する]の左にあるチェックボックスをクリックしてチェック状態とし, マーカを連動モードにします。
 - マーカAに対応する[X]の数字領域に[2048]と設定し、 Tab キーを押します。
- 手順 6: Ctrl キーを押しながら▽キーを押します。[編集(E)] [貼り付け(P)]と操作しても同じ結 果となります。 これで、クリップボードの波形データが、波形後半に貼り付けられました。
- 解説 1: Ctrl キーを押しながらCキーを押すような操作を,以降 Ctrl + Cと記します。Ctrl + C (コピー)では,コピーされた領域の波形はそのまま残ります。Ctrl + X(カット)では,選択 領域のデータがクリップボードに入る点は同じですが,選択領域の波形が削除されます。 Ctrl + D(削除)では,選択領域の波形が削除されますが,クリップボードの内容は変化 しません。
- 解説 2: マーカAとBは,範囲を選択するために使用します。マーカで指定された範囲が,例えば0 ~4096のとき,実際の選択範囲は,0≦X<4096となります。
- 7.5.6 グリッド描画

[設定(S)] - [グリッド描画(G)] (Alt, S, G)と操作するごとに, [グリッド描画(G)]の左側にチェ ックマークが表示/非表示されます。チェック状態の時には, 波形表示領域のグリッド描画がオンとなり, 未チェック状態の時には, 波形表示領域のグリッド描画はオフとなります。

波形の印刷では、グリッドは印刷されません。(577.7)

7.6 ファイル操作

任意波形編集ツールは、下記の種類のファイルを読み書きできます。()内は、その種類のファイ ルに付加される、ファイル拡張子です。

- 波形データ, 表示単位設定を含む独自形式ファイル(.wdb)(127.6.1)
- 波形データのみを持つテキスト形式ファイル(.txt)(277.6.2)
- 任意波形編集に用いられるパラメタを持つテキスト形式ファイル(.wfn)(C27.8.6)
- 制御点情報を持つテキスト形式ファイル(.prn / .tsv / .csv)(CF 7.9.4)

7.6.1 独自形式ファイル

任意波形編集ツールで作成した波形データ,及び表示単位の設定を,一つのファイルにまとめて保存することができます。

[ファイル(F)]-[保存(独自形式)(A)](Alt, F, A又はCtrl+A)と操作すると, [名前をつけて 保存]というタイトルの画面が表示されます。

保存する場所を選択し、ファイル名を入力して保存(S)ボタンをクリックしてください。ファイル拡張子は".wdb"で、ファイル名入力時に省略可能です。

ー度でも、ファイルの読み書きを行うと、[ファイル(F)] – [上書き保存(S)] (<u>Alt</u>, F, S] 又は <u>Ctrl</u> +S)か、ツールバーのボタンをクリックすることで現在のファイル(タイトルバーに表示されます)に上 書き保存されます。まだファイル操作を行っていない場合、[上書き保存]操作は独自形式ファイルの [名前を付けて保存]と同様の処理を行います。

7.6.2 テキスト形式ファイル

任意波形編集ツールで作成した波形データを,他のアプリケーションでも容易に扱えるよう,テキストファイルとして保存することもできます。

[ファイル(F)] – [保存(テキスト形式)(T)] (Alt, F, T又は Ctrl + T)と操作すると, [名前をつけて保存]というタイトルの画面が表示されます。

保存する場所を選択し、ファイル名を入力して保存(S)ボタンをクリックしてください。ファイル拡張子は".txt"で、ファイル名入力時には省略可能です。

テキストファイルでは、16ビット(0~+65535)相当のデータを、1行1データの数字列として保存します。元が負の値は、65536が加算されて正の値に変換されています。行数は4096に固定されています。

このファイルは、テキストエディタや表計算ソフトウェア等で、そのまま読み込むことが可能です。

逆に、テキストエディタや表計算ソフトウェア等でテキストファイルを作成し、そのファイルを「任意波 形編集ツール」で読み込むことも可能です。テキストファイル作成の際、1行1データとなるようにし、デ ータは 16 ビットの符号付き整数(-32768~+32767)としてください。保存時のファイルとは数値フォ ーマットが異なることに注意してください。

データファイルのデータ数は、4096を基準としてください。この基準値以上のデータ数であった場合 では、余った部分を読み飛ばします。逆に、データの数が少ないときは、波形の先頭部分に読み込ま れ、残りの部分は変化しません。

7.6.3 ファイルの読み込み

[ファイル(F)] - [開く(O)] (Alt, F, O又は Ctrl + O)の操作か, ツールバーのボタンをクリック することで, [ファイルを開く]ダイアログを表示します。ファイル名を指定して, OK ボタンをクリックする と, 指定した波形データファイルから波形情報を読み出します。

7.7 波形の印刷

「任意波形編集ツール」で作成した波形データを,波形イメージとして印刷することもできます。ただし表示状態に関わらずグリッドは印刷されません。

[ファイル(F)]-[印刷(P)](Alt, F, P又はCtrl+P)と操作すると、印刷設定ダイアログが表示されます。印刷設定の詳細は、お使いになるプリンタの取扱説明書をご参照ください。

7.8 新規任意波形編集

新規任意波形編集パネルは,標準波形や数式波形を作成する画面です。

項目選択パネルの 新規波形生成 ボタンをクリックするか, [ツール(T)]-[新規波形生成(W)] (Alt, T, W)と操作すると, 新規任意波形編集パネルが表示されます。新規任意波形編集パネル が表示されている間は, 波形表示部に対しての操作を行うことはできません。

新規任意波形編集パネルで任意波形編集し, 波形表示画面に戻った直後には, [編集(E)] – [元に戻す(U)] (AIt, E, U), 又は Ctrl + Uと操作することによって, 生成した波形を反映する前の状態に戻すことができます。

図7-8 新規任意波形編集

7.8.1 範囲・ページ

新規任意波形編集では、ページごとに独立した"範囲"と"波形の定義"を与えることによって、波形を 生成します。初めて新規任意波形編集パネルを表示する際、現在のマーカ指定範囲が任意波形編集 の"範囲"として与えられています。

各ページの範囲は、[範囲(X)]の下の、二つの数字入力領域で設定します。

複数のページの範囲が重複しているときは、ページ番号が大きい方(後の方)の波形定義が有効と なります。これを利用して、前の方のページで定義した波形の一部分を、後の方のページで変更する ということも可能です。

また,各ページ独立してページの有効/無効を設定できます。画面下方の[有効],[無効]の どちら かのラジオボタンをクリックし,選択状態に切り換えてください。

ページの移動は,任意波形編集画面左下の
▲ボタンで行います。
▲ボタンで前のページ

に移動,
▶ボタンで次のページに移動します。

■ボタンをクリックすれば、有効になっている最初のページにジャンプします。 ■ボタンをクリックす れば、有効になっている最後のページにジャンプします。

ボタンの間の数値入力領域に,直接数字を入力して Enter キーを押せば,指定されたページにジャンプします。設定できるページ番号は,1~200 までとなっています。

新規任意波形編集パネル上部の初期化 ボタンをクリックすることで、表示されているページの設定 内容をデフォルト値に初期化することができます。

全ページを一括してデフォルト値に戻すには、全ページクリアボタンをクリックします。このとき、各ページの範囲がゼロに初期化されます。

表示ページの波形を生成するには、画面下方のページ OK(G)ボタンをクリックします。

全てのページを一括して任意波形編集するには、画面下方の全ページ OK(K)ボタンをクリックします。

波形を作成せずに波形表示画面に戻るには,画面下方のキャンセルボタンをクリックします。

7.8.2 波形選択

新規任意波形編集パネルで[波形(T)]右の▼ボタンをクリックすると,使用できる波形のリストが表示されますので,クリックして波形を選択してください。

生成できる波形種類は表 7-1の通りです。

表7-1 波形選択

波形	説明
正弦波	各パラメタを設定して,正弦波を生成します。
三角波	各パラメタを設定して、三角波を生成します。
方形波	各パラメタを設定して、方形波を生成します。
ノイズ	乱数計算を元に、生成する度に異なるノイズ波形を生成します。なお、生
	成されるノイズ波形は一様振幅分布のホワイトノイズです。
DC	指定範囲内を同一のデータとして波形を生成します。
波形関数	様々な数式を組み合わせて波形を定義します。

各種パラメタの設定については7.8.3をご覧ください。 波形関数の数式設定については7.8.4をご覧ください。

7.8.3 パラメタ設定

[波形(T)]の設定が,正弦波,三角波,方形波,ノイズ,DCの時には,それぞれの波形を生成する ためのパラメタを設定する必要があります。設定できるパラメタは下記の通りです。

	正弦波	三角波	方形波	ノイズ	DC
オフセット(O)	0	0	0	0	0
サイズ(Z)	0	0	0	0	0
振幅(A)	0	0	0	0	_
周期(P)	0	0	0	—	_
位相(H)	0	0	0	—	_
傾斜(M)	_	0	_	_	_
デューティ(R)	_	_	0	—	_
遷移(N)	_	_	0	—	_

表7-2 標準波形のパラメタ

■パラメタの種類

サイズは、そのページの[範囲(X)]指定の幅となります。サイズを変更すると、範囲指定の上限が 変化します。

振幅は、ピーク-ピーク値です。

周期は、範囲内に、何周期(何波)の波形を生成するかの指定です。

位相の単位は[deg]です。

三角波では、傾斜(シンメトリ)を設定できます。傾斜の単位は[%]です。

方形波では、デューティ比率、遷移を設定できます。デューティ比率の単位は[%]です。遷移は、波 高値が 0[%]⇔100[%]に達するのに要する時間を、周期に対する比率[%]で設定します。

±フルスケール値を超えるような[オフセット(O)]や[振幅(A)]設定が行われたときは, ±フルスケールで波形がクリップします。

GWINSTEK

7.8.4 波形関数設定

波形選択(1277.8.2)で[波形関数]が選択されると、定数入力部[定数(C)],及び数式入力部[Y=] が現れます。

波形 波形関数 🗸			初期化	
	開く 保存	印刷	全ページクリア	
範囲(<u>X</u>)	数式設定一			
0.000000	000 定数(<u>C</u>)	言十二	算実行(例)	
~ 4096.000	000		*	
	¥=			
32767.00				
0.000000				
-32767.0				
【◀ ┫ 1 ▶▶】 ◎ 有効 ◎ 無効				
全ページOK(K) ページOK(G) キャンセル				
図7-9 「波形関数」を選択したとき				

定数と式を入力して計算実行(M)ボタンをクリックすると、新規任意波形編集パネルの波形表示領域で、計算した結果の波形を確認できます。

■定数

定数は, 例えば[fs=32767;], [s=2*pi/4096;]のように, [定数=値 or 式]の形で記述します。一つの定数定義や式の最後には, 必ずセミコロン[;]をつけます。

定数や式は、半角文字です。アルファベットは大文字/小文字の区別はされません。

定数は、アルファベットを先頭とし、アルファベットか数字からなる文字列としてください。

定数は、組み込み定数(137表 7-3)とは異なる文字列としてください。また、組み込み関数(137表 7-5)とも異なる文字列とすることをおすすめします。

全ページ OK(K)ボタンでは、定数は定義されたページ以降の全ページに対して有効となります。

例えば、1ページで定義された定数は、すべてのページに対して有効です。3ページで定義された定数は、1,2ページに対しては無効、3ページ以降に対して有効です。

ページ OK(G)ボタンで表示されているページの波形だけを作成するときには、定数は表示されて いるページに対してのみ有効です。例えば、2ページで定義されている定数は、1ページや3ページ以 降に対しては無効です。

この際,別のページで与えられている定数を有効にするためには,あらかじめ定数を定義しているページで計算実行(M)ボタンをクリックし,計算を実行しておいてください。

■組み込み定数

表 7-3の定数は、「任意波形編集ツール」にあらかじめ組み込まれています。

前述の「定数」欄で、組み込み定数と同じ名前の定数を定義すると、組み込み定数の定義は無効 化され、ユーザーが定義した値や式が有効となります。

表現	意味	值
рі	円周率	3.1415926535898
С	光速	2.99792458e8
h	プランク定数	6.6260755e-34
k	ボルツマン定数	1.380658e-23
r	オイラー定数	0.57721566490153

表7-3 組み込み定数

■関数

数式入力部[Y=]には、Y=f(X)の形式の数式を与えます。

ここで[X]は, そのページの範囲内を変化する値です。例えばそのページの範囲が 1000~2000 だったとすると, 式中の[X]も 1000~2000 の間を変化します。

数式中の[X]の値は、単位設定画面で設定される横軸の単位(1277.12.1)に影響を受けます。 例えば、[Y=][sin(X)]のような式で、正弦波を与えるときを考えます。ここで、sin()関数の引数は、 ラジアン表現です。

横軸の単位が[アドレス]で,範囲が0~4096のとき,4096=2*π*651.8986...ですので,この式の 結果は,約 652 波の正弦波となります。

横軸の単位が[時間]で, 周波数が 500 Hz のときは, 周期が 2 ms となりますので, 2e-3=

2*π*0.0003183...ですので, この式の結果は, 正弦波 0°付近のほとんど変化しない値となります。 縦軸の単位が[ユーザ単位]で 0~1 のときは, 1=2*π*0.1591...ですので, この式の結果は, 正 弦波の前半約 1/6 の波形となります。

正弦波 1 波を最も簡単な式で得るには、横軸の単位を[ユーザ単位]とし、[最小値~最大値]を0 ~6.283185 とします。

数式の[Y=]の値は、システム設定画面で設定される縦軸の単位(C277.12.2)に影響を受けます。 [Y=][sin(X)]のような式で、正弦波を与えるときを考えます。sin()関数の値は、±1です。

縦軸の単位が[データ]のとき,その範囲は-32768~+32767ですので,この式の結果は,0付近 のごく小さな振幅の波形にしかなりません。

縦軸の単位が[電圧]で振幅が20 Vp-pのとき, その範囲は±10 ですので, この式の結果は, フルス ケールの 1/10 の正弦波となります。

縦軸の単位が[ユーザ単位]で-1~+1のとき、式の結果はフルスケールの正弦波となります。 計算結果が±フルスケールを超えたときは、±フルスケールで波形がクリップします。

∎演算子

定数入力部[定数(C)]及び数式入力部[Y=]では,表7-3の演算子を組み合わせて使用できます。 演算子の優先度は,表の上の方が高く,下の方が低くなっています。論理演算子は,条件が真のとき には1を,偽のときには0を返します。

表7-4 演算子

<u>G<u></u>UINSTEK</u>

演算子	結合規則	備考
(), 関数, 定数, ユーザ定義変 数, 数字列	\rightarrow	
+, -, !	\leftarrow	単項演算子, !は論理演算子
^	\rightarrow	2項演算子, べき乗
*, /	\rightarrow	2項演算子, 乗除算
+, -	\rightarrow	2項演算子,加減算
<, <=, >, >=	\rightarrow	論理演算子, 大小比較
==, !=	\rightarrow	論理演算子, 等値比較
&&	\rightarrow	論理演算子, 論理積
	\rightarrow	論理演算子, 論理和

■組み込み関数

定数入力部[定数(C)]及び数式入力部[Y=]では,表 7-5に示す関数を組み合わせて使用できます。

表7-5 組み込み関数

関数	説明
sin(式), cos(式),	三角関数です。引数はラジアン表現です。
tan(式)	
atn(式)	逆正接関数です。引数を正接とする角度をラジアンで返します。
sqr(式)	正の平方根を返します。
exp(式)	e(自然対数の底)を底とする指数関数です。
log(式)	自然対数を返します。
log10(式)	常用対数を返します。
power(式 1,式 2)	式1を実部,式2を虚部とする複素ベクトルの大きさを返します。
phase(式 1,式 2)	式1を実部,式2を虚部とする複素ベクトルの偏角を返します。
tri(式 1,式 2)	式1に角度,式2に傾斜を与え,三角波を定義する関数です。式2は
	省略可能です。省略した場合, 傾斜を 50%として扱います。
sqw(式 1,式 2,式 3)	式1に角度,式2にデューティ比率,式3に遷移を与え,方形波を定
	義する関数です。式2,式3は省略可能です。省略した場合,デューテ
	ィ比率を 50%, 遷移を 0%として扱います。ただし, 式 3 を指定する場
	合は,式2を省略できません。
rnd()	最大振幅が±1 の一様振幅分布(ホワイトノイズ)を生成します。引数
	はありません。

■波形関数式の例

波形関数式のいくつかの例を示します。 ページ1だけの例では,範囲は横軸の全範囲とし,記述を省略します。

- ●正弦波1波(横軸単位:アドレス 0~4096,縦軸単位:データ ±32767)
 ページ1 [定数(C)] [fs=32767;] [s=2*pi/4096;] ←4096 アドレスを2πとする [Y=] [fs*sin(x*s)]
- ●正弦波1波(横軸単位:時間0~1ms,縦軸単位:電圧±10V)
 ページ1 [定数(C)] [fs=10;] [s=2*pi/1e-3;] ←1 ms を2πとする [Y=] [fs*sin(x*s)]
- ●正弦波1波(横軸単位:ユーザ単位 0~1,縦軸単位:ユーザ単位 −1~+1)
 ページ1 [定数(C)] [s=2*pi;] [Y=] [sin(x*s)]
- 正弦波1波(横軸単位:ユーザ単位 0~6.283185,縦軸単位:ユーザ単位 -1~+1)

 ページ1 [定数(C)] (なし)
 [Y=] [sin(x)]

- DC スイープ波形(横軸単位:ユーザ単位 0~1,縦軸単位:ユーザ単位 −1~+1) ページ1 [定数(C)] (なし) [Y=] [(x-0.5)+sin(2*pi*x*32)/2]
- 減衰波(横軸単位:ユーザ単位 0~6.283185, 縦軸単位:ユーザ単位 −1~+1)
 ページ1 [定数(C)] (なし) [Y=] [exp(-x)*sin(x*64)]

 ● DSB 波形(横軸単位:ユーザ単位 0~6.283185, 縦軸単位:ユーザ単位 −1~+1)
 ページ1 [定数(C)] [a=19.5;] [b=20.5;]
 [Y=] [(sin(a*x)+sin(b*x))/2]
G≝INSTEK

7.8.5 波形作成例

■標準波形

標準的な波形の例として、シンメトリ30%の三角波を作成します。

手順 1:	[項目選択パネル]上の, 新規波形生成ボタンをクリックします。
	[ツール(T)]ー[新規波形生成(W)]と操作しても、同じ結果となります。
	[項目選択パネル]欄が[新規任意波形編集パネル]に変更されます。
手順 2:	[波形(T)]の右の▼ボタンをクリックし, リストの中の[三角波]をクリックします。
手順 3:	[傾斜(M)]の右の数字入力部の数値を, [50]→[30]に変更し, Enter キーを押します。こ
	れで, シンメトリ 30%の三角波を指定できました。
手順 4:	全ページ OK(K)をクリックすると、[新規任意波形編集パネル]が閉じ、波形表示部に生成
	した波形が表示されます。

- 解説 1: この例では、横軸全域に波形を生成しました。「任意波形編集ツール」では例えば、ページ 1 に前 1/4 の波形を指定、ページ 2 に後 1/2 の波形を指定…というように、複数のページ に分割できます。この際、全ページ OK(K)ボタンをクリックすれば、有効となっている複数 のページの指定波形を、一括して実行できます。表示ページだけを実行したいときは、
 ページ OK(G)ボタンをクリックしてください。上の例では、ページ 1 だけの指定ですので、ど ちらをクリックしても同じ結果となります。
- 解説 2: 三角波以外に,正弦波,方形波(デューティ比率可変),ノイズ,DC,及び数式による波形 定義(波形関数)を選択できます。

■数式波形

数式による任意波形編集の例として,基本波に3次と5次の高調波を重畳した波形を作成します

手順 1:	[設定(S)]-[システム設定(S)]と操作します。
	[単位設定]というタイトルのダイアログが現れます。
手順 2:	[X 軸 単位設定]内の[単位(X)]コンボボックスから, [ユーザ単位]をクリックします。[最
	小値~最大値]は, 初期値の[0.000000~1.000000]のままとします。
手順 3:	[Y 軸 単位設定]内の[単位(Y)]コンボボックスから, [ユーザ単位]をクリックします。[最
	小値~最大値]は,初期値の[0.000000~1.000000]のままとします。
手順 4:	OK ボタンをクリックして、波形表示画面に戻ります。
手順 5:	 [項目選択パネル]上の,新規波形生成ボタンをクリックします。
	[ツール(T)]-[新規波形生成(W)]と操作しても、同じ結果となります。
	[項目選択パネル]欄が[新規任意波形編集パネル]に変更されます。
手順 6:	[波形(T)]の右の▼ボタンをクリックし, 表示されたリスト中の[波形関数]をクリックします。
手順 7:	[定数(C)]の右の入力領域に, [s=2*pi;]と入力します。
	[Y=]の右の入力領域に, [sin(x*s)+sin(x*s*3)/3+sin(x*s*5)/5]と入力します。
手順 8:	計算実行(M)ボタンをクリックすると,任意波形編集画面内に計算結果の波形が表示され
	ます。
手順 9:	全ページ OK(K)ボタンをクリックして、波形表示部に戻ります。

- 解説 1: ここでは, ユーザ単位を使用することによって, 横軸(X)全体を0~1として扱いました。また 同様に, 縦軸(Y)全体を±1として扱いました。 ここで, 定数に s=2πを規定し, 式の中で[x*s]とすることによって, 正弦波1周期を表現し やすくしました。
- 解説 2: 手順 2 で、ユーザ単位の X 範囲を、 0~6.283185(2 π)とすれば、式はもっと簡単になり、 [sin(x)+sin(x*3)/3+sin(x*5)/5]となります。

7.8.6 任意波形編集パラメタファイル操作

新規任意波形編集パネルのパラメタ設定はテキストファイルとして保存できます。

新規任意波形編集パネル上部の保存ボタンをクリックすると、[名前をつけて保存]というタイトルの 画面が表示されます。

保存する場所を選択し、ファイル名を入力して保存(S)ボタンをクリックしてください。ファイル拡張子は".wfn"で、ファイル名入力時には省略可能です。

パラメタ設定のファイルを読み出すには、新規任意波形編集パネル上部の開くボタンをクリックします。[ファイルを開く]というタイトルの画面が表示されますので、ファイルの場所を選択し、ファイル名を 入力して開く(O)ボタンをクリックしてください。

任意波形編集画面設定のファイルはテキストファイルですので、テキストエディタなどで編集することも可能ですが、あまりお奨めしません。「任意波形編集ツール」が読みとることのできない書式になったり、式が長くなりすぎて限界を超えたときなど、編集の結果を正常に読みとれなくなる可能性があります。「任意波形編集ツール」が扱うことのできる他のファイルは、7.6を参照してください。

7.8.7 印刷

新規任意波形編集パネルのパラメタ設定は、印刷することもできます。

新規任意波形編集パネル上部の印刷ボタンをクリックすると、印刷設定ダイアログが表示されます。 印刷設定の詳細は、お使いになるプリンタの取扱説明書をご参照ください。

<u>G<u></u>UINSTEK</u>

7.9 新規補間編集

新規補間編集パネルは、各種の補間によって、波形を作成するための画面です。補間を行うため に設定する"点"を、"制御点"と呼びます。

項目選択パネルの新規補間編集ボタンをクリックするか, [ツール(T)]-[新規補間編集(I)](AIt, (T, I)と操作すると, 新規補間編集パネルが表示されます。

新規補間編集パネルで任意波形編集し, 波形表示画面に戻った直後には, [編集(E)]-[元に戻 す(U)] (<u>AIt</u>, E, U), 又は <u>Ctrl</u>+Uと操作することによって, 生成した波形を反映する前の状態に 戻すことができます。

図7-10 新規補間編集

補間編集の操作は,選択されている範囲に対して実行されます。波形表示画面のAマーカとBマーカで,あらかじめ範囲を選択しておいてください。

GWINSTEK

7.9.1 制御点の設定

補間は,波形表示画面でマーカで選択されている範囲に対して実行されます。 制御点は選択範囲外にも設定できますが,範囲外の制御点は補間実行の際には無視されます。 制御点の設定は,任意の位置に行うことが可能ですが,同一X座標上に複数の制御点を設定する ことはできません。

■数値による制御点の指定

新規補間編集パネルの[X=]と[Y=]の右の入力領域に座標値を入力します。

[X=]の右をアクティブにするには、入力領域をクリックするか、Alt+Xと操作します。

[Y=]の右をアクティブにするには、入力領域をクリックするか、Alt+Yと操作します。

追加(A)ボタンをクリックすると、波形表示部の指定された位置に、[+]マークが表示されます。また新規補間編集パネルの制御点一覧表にも、制御点の位置が数値で表示されます。制御点一覧表は、Xの値の小さい方から大きい方に並べ替えて表示されます。

■マウスによる制御点の指定

制御点の[+]マークのいずれかが赤くなっている(選択されている)ときは、まず波形表示領域のマ ークのないところでクリックし、すべてのマークを水色(非選択)にしてください。

制御点を追加したい位置にマウスカーソルを移動し、 Ctrl キーを押しながらクリックすると、制御点が追加されます。波形表示部左上の[カーソル位置]欄で、おおよそのマウスカーソル位置を知ることができます。追加された制御点は、新規補間編集パネルの制御点一覧表にも追加されるので、座標値を確認してください。

■数値による補間制御点の移動

新規補間編集パネルの制御点一覧表から、いずれかを選択(クリック)すると、その制御点が選択され、下記のようになります。

- 一覧表の指定部分が反転表示されます。
- [X=]と[Y=]の入力領域には、選択された制御点の座標値が表示されます。
- 波形表示部の,相当する座標点[+]マークが,赤色表示となります。

波形表示部の[+]マークをクリックしても、制御点を選択できます。ただし画面の拡大率が低いとき、 表示分解能の関係で、うまくマークを捕まえることができないときがあります。

制御点が選択されている状態で、[Y=]の数値を更新し、追加(A)ボタンをクリックすると、選択されていた制御点が移動します。[X=]の値を更新してから追加(A)ボタンをクリックした場合は、同一座標 点が存在しない時には新規に制御点が追加され、存在する場合にはその制御点座標が更新されま す。

■マウスによる制御点の移動

波形表示部の[+]マークをドラッグすることによって、制御点を移動させることもできます。ただし画 面の拡大率が低いとき、表示分解能の関係で、うまくマークを捕まえることができないときがあります。

■制御点の削除

<u>削除(D)</u>ボタンをクリックすると、そのとき選択されている制御点が、削除されます。 削除した制御点を復活させる方法はありません。この機能は注意してご使用ください。

■制御点の全削除

全削除(E)ボタンをクリックすると、そのときに設定されていた制御点が、すべて削除されます。 全削除した制御点を復活させる方法はありません。この機能は特に注意してご使用ください。

7.9.2 補間実行

範囲選択、制御点設定ができたら、補間を実行します。補間方法には、下記の3種類があります。

- 制御点の間を直線で補間する, 直線補間
- 制御点の間をなめらかな曲線で補間する, スプライン補間

● 選択範囲の外とも波形が連続するように曲線で補間する,連続スプライン補間

直線補間を実行するには、直線(L)ボタンをクリックするか、Alt+Lと操作します。

スプライン補間を実行するには、スプライン(S)ボタンをクリックするか、Alt+Sと操作します。

連続スプライン補間を実行するには、連続ボタンをクリックします。

波形の一部が範囲選択されているときには、範囲両端と範囲内の制御点を補間することによって、 補間を実行します。

波形全体が選択されているとき,連続スプラインでは,波形が繰り返されたときにもなめらかにつな がるように補間します。直線,スプライン補間では,最初と最後が異なる値になり,波形を繰り返したと きに不連続となります。

補間の結果±フルスケールを超えるような設定が行われたときは、±フルスケールで波形がクリップします。

補間を実行したら、OK(T)ボタンをクリックして、波形表示画面に戻ります。

7.9.3 波形作成例

補間による任意波形編集の例として,なめらかなパルス波形を作成します。

手順 1:	[設定(S)]-[システム設定(S)]と操作し、[単位]というタイトルのダイアログを表示させま
	す。
手順 2:	[単位(X)]右のコンボボックス内から, [ユーザ単位]をクリックします。
	[最小値~最大値]は, 初期値の[0.000000~1.000000]のままとします。
手順 3:	[単位(Y)]右のコンボボックス内から, [ユーザ単位]をクリックします。
	[最小値~最大値]は, 初期値の[-1.000000~1.000000]のままとします。
	OK ボタンをクリックして,波形表示画面に戻ります。
手順 4:	A マーカ(赤)の座標値を[0.2]と設定し, Enter キーを押します。
	B マーカ(青)の座標値を[0.8]と設定し, Enter キーを押します。
手順 5:	[項目選択パネル]上の, 新規補間編集ボタンをクリックします。
	[ツール(T)]ー[新規補間編集(I)]と操作しても、同じ結果となります。
	[項目選択パネル]欄が[新規補間編集パネル]に変更されます。
手順 6:	[X=]座標値に[0.5], [Y=]座標値に[1]を入力し, 追加(A)ボタンをクリックします。
手順 7:	連続ボタンをクリックします。
	 波形表示部には、補間された波形が表示されます。
手順 8:	OK(T)ボタンをクリックし、波形表示部に戻ります。

- 解説 1: 補間編集において, 手順6 で設定したような点を"制御点"と呼びます。
- 解説 2: 直線補間では、制御点の間を直線で補間することによって、波形を作成します。 スプラインでは、制御点の間を、スプライン曲線でなめらかに補間します。
- 解説 3: 連続スプラインでは、選択された範囲の前後ともなめらかにつながるように補間します。全 範囲が選択されているときは、その波形を繰り返したときに波形の最初と最後がなめらか につながるように補間します。

7.9.4 制御点ファイル操作

新規補間編集パネルの制御点設定は、テキストファイルとして保存できます。

新規補間編集パネル上部の保存ボタンをクリックすると、[名前を付けて保存]というタイトルの画面 が表示されます。

保存する場所を選択し、ファイル名を入力して保存ボタンをクリックしてください。ファイル拡張子は ".prn", ".tsv", ".csv"から選択し、ファイル名入力時には省略可能です。

- 拡張子 .prn スペース区切りの制御点情報ファイル
- 拡張子 .tsv タブ区切りの制御点情報ファイル
- 拡張子 .csv カンマ区切りの制御点情報ファイル

制御点設定ファイルを読み出すには,新規補間編集パネル上部の開くボタンをクリックします。[ファイルを開く]というタイトルの画面が表示されますので,ファイルの場所を選択し,ファイル名を入力して開くボタンをクリックしてください。

このファイルは、テキストエディタや表計算ソフトウェア等で、そのまま読み込むことが可能です。また、テキストエディタや表計算ソフトウェア等でテキストファイルを作成し、そのファイルを「任意波形編集ツール」で読み込むことも可能です。テキストファイル作成の際、1 行が X と Y の 2 データとなるようにし、上記拡張子の形式と同様の書式で保存するよう注意してください。

「任意波形編集ツール」が扱うことのできる他のファイルは、7.6を参照してください。

7.10 波形間演算

波形間演算パネルは,選択範囲の波形と,標準波形,数式波形,又はクリップボードの波形を四則 演算し,波形を作成する機能を持っています。

項目選択パネルの波形間演算ボタンをクリックするか、[ツール(T)]-[波形間演算(O)](Alt, T, O)と操作すると、波形間演算パネルが表示されます。波形間演算パネルが表示されている間は、波形表示部に対しての操作を行うことはできません。

波形間演算パネルで任意波形編集し,波形表示部に戻った直後には,[編集(E)]-[元に戻す (U)](<u>Alt</u>, E, U),又は<u>Ctrl</u>+Uと操作することによって,生成した波形を反映する前の状態に 戻すことができます。

波形間演算は、マーカにより選択されている範囲に対して実行されます。波形表示部の A マーカと B マーカで、あらかじめ編集範囲を選択しておいてください。

図7-11 波形演算

7.10.1 演算の種類

[選択領域]と[クリップボード/生成波形]の間にある▼ボタンをクリックすると,四則演算のリストが 表示されます。リストの中をクリックするか, ①, ↓, →, ←キーを押して, 演算子を選択してください。 なお, [*]は乗算(x), [/]は除算(÷)を表します。

7.10.2 演算対象の設定

■生成波形

生成波形(W)ボタンをクリックするか、Alt+Wと操作すると、任意波形編集画面が現れます。操作 については、"新規任意波形編集"(CF7.8)に準じて行うことができます。ただし、波形間演算における 任意波形編集には下記のような制限があります。

- [範囲(X)]や[サイズ(Z)]が, 変更できない。
- 複数ページに範囲を分割することができない。

"新規任意波形編集"(0377.8)を参考に波形を生成し, ページ OK(G)をクリックすると, [クリップボード/生成波形]の領域に作成した波形が表示されます。

■クリップボード

クリップボード(B)ボタンをクリックするか, Alt+Bと操作すると, [クリップボード/生成波形]の領域 にクリップボードに格納されていた波形が表示されます。クリップボード操作については, 7.5.4を参照 してください。

選択範囲がクリップボード内データよりも長ければ、データの足りない分は0データとして扱われま す。クリップボード内データが選択範囲よりも長ければ、データはクリップボードの前方から利用されま す。

クリップボードの内容は 16 ビット整数ですが, 波形間演算ではそのときの縦軸単位に変換されて扱われます。例えば縦軸ユーザ単位: -1~+1 のときは, クリップボード内データは, ±1 に対応する形に変換されて扱われます。

7.10.3 演算の実行

演算の実行は、演算種類を変更したり、[クリップボード/生成波形]のデータを変更する毎に自動的 に行われます。

計算の実行結果は[計算結果]領域に波形として表示されます。

演算結果を波形表示部に反映するためには OK ボタンをクリックします。キャンセルボタンをクリック することで、演算結果を破棄して波形表示部に戻ることができます。

7.10.4 波形作成例

波形間の演算の例として、正弦波にノイズを重畳した波形を作成します。

手順 1:	[新規任意波形編集パネル]を表示します。
	初期状態では,正弦波が選択されています。
	[振幅(A)]の右の数値を, [65534]→[50000]に変更し, 少し振幅を小さくします。
	全ページ OK(K)ボタンをクリックして、波形表示画面に戻ります。
手順 2:	[項目選択パネル]上の, 波形間演算ボタンをクリックします。
	[ツール(T)]-[波形間演算(O)]と操作しても、同じ結果となります。
	[項目選択パネル]欄が[波形間演算パネル]に変更されます。
手順 3:	生成波形(W)ボタンをクリックします。
手順 4:	[波形]コンボボックスを選択し, 表示されたリスト中の[ノイズ]をクリックします。
	[振幅(A)]の右の数値を, [65534]→[15000]に変更します。
	ページ OK(G)ボタンをクリックすると、 [波形間演算パネル]に戻ります。
	この段階で, [計算結果]欄には加算された結果が表示されます。
手順 5:	OKボタンをクリックして、波形表示部に戻ります。
	正弦波にノイズを重畳した波形が得られました。

解説 1: この例で使用した加算以外に,減算,乗算,除算が可能です。

- 解説 2: あらかじめ, 波形表示画面でマーカAとBで波形の一部を選択しておくことによって, 波形の一部に対して演算を行うことができます。
- 解説 3: この例では,任意波形編集パネルで作成した波形を演算に使用しました。 手順 3 でクリップボード(B)ボタンをクリックすると,"クリップボード"の内容を演算に使用で きます。
- 解説 4: 乗算を使用するときは、縦軸をユーザ単位の±1とすると便利です。 こうすれば、フルスケール値同士を乗算したときに、結果もフルスケール値となります。

7.11 圧縮/伸張

[圧縮/伸張パネル]は、選択範囲の波形を、縦/横に圧縮伸張し、波形を生成します。

項目選択パネルの圧縮/伸張ボタンをクリックするか、[ツール(T)]-[圧縮/伸張(P)](Alt, T, P) と操作すると、[圧縮/伸張パネル]が表示されます。[圧縮/伸張パネル]が表示されている間は、波形 表示部に対しての操作を行うことはできません。

[圧縮/伸張パネル]で任意波形編集し, 波形表示部に戻った直後には, [編集(E)]-[元に戻す (U)](<u>Alt</u>, E, U), 又は <u>Ctrl</u>+Uと操作することによって, 生成した波形を反映する前の状態に 戻すことができます。

-X		
開始点(S)		終了点(E)
X=	0.000000000	X= 4096.000000
Y=	0.000000	Y= 0.000000
		全体に伸張
Y ◎ 最大	:/最小(M)	◎ 振幅/オフセット(O)
最大()	() 32767.0000	振幅(T) 65534.0000
最小()	4) -32767.000	DC オフセッド(D) 0.00000000
	最大振幅	オフセット固定最大振幅
	OK	キャンセル

図7-12 圧縮/伸張

7.11.1 横軸の圧縮/伸張

圧縮/伸張の操作はマーカによる選択範囲内にのみ影響を与えるので,横軸の圧縮/伸張を行う前に,波形表示部のマーカで選択範囲を設定(CF)7.5.3)します。

横軸の圧縮/伸張は、圧縮/伸張画面の[X軸]内の項目で設定を行います。

■選択範囲を,開始点/終了点に圧縮/伸張

[開始点(S) X=], [終了点(E) X=]の入力領域に数値を入力し, OK ボタンをクリックします。 あらかじめマーカで選択された範囲の波形を, 開始点/終了点で指定された範囲に, 圧縮/伸張, 又は移動できます。

圧縮/伸張実行の結果データがなくなる領域は、直前又は直後の値で補充されます。

■選択範囲を,全体に伸張

全体に伸張ボタンをクリックすると、あらかじめマーカで選択された範囲を、波形データ全体に伸張 できます。ディジタルオシロスコープで採取した実データなどは、正確に1周期になっていない場合が ほとんどです。このような際に、この機能を使って1周期を切り出すことができます。

■その他

伸張率が高すぎると、波形に歪みが発生するときがありますので、ご注意ください。

7.11.2 縦軸の圧縮/伸張

圧縮/伸張の操作はマーカによる選択範囲内にのみ影響を与えるので、縦軸の圧縮/伸張を行う 前に、波形表示部のマーカで選択範囲を設定(CP77.5.3)します。

縦軸の圧縮/伸張は、圧縮/伸張画面の[Y軸]内の項目で設定を行います。

■最大値/最小値を指定して, 圧縮/伸張

[最大/最小(M)]の〇(オプションボタン)が選択(④)されている状態の時,マーカで選択されている 範囲の最大値が[最大(X)]の右に,最小値が[最小(N)]の右に表示されています。圧縮/伸張実行 後の,ターゲットの最大値/最小値を各表示部に入力してEnterキーを押すと,波形表示分の波形が 変化します。

最大値く最小値に設定すれば,波形を上下反転させることもできます。

所望の波形が得られていれば、OK ボタンをクリックします。

圧縮/伸張を実行せずに波形表示画面に戻るには、キャンセルボタンをクリックします。

■振幅/オフセットを指定して, 圧縮/伸張

[振幅/オフセット(O)]の○(オプションボタン)が選択(④)されている時, マーカで選択されている範 囲の振幅値が[振幅(T)]の右に, オフセット値が[DC オフセット(D)]の右に表示されています。

振幅/オフセットと最大値/最小値は、下記のような関係になっています。

振幅=(最大値~最小値の幅),オフセット=(最大値~最小値の中心)

最大値=オフセット+(振幅÷2), 最小値=オフセット-(振幅÷2)

振幅を負の値に設定すれば、波形を上下反転させることもできます。

所望の波形が得られていれば、OK ボタンをクリックします。

圧縮/伸張を実行せずに波形表示画面に戻るには、キャンセルボタンをクリックします。

■選択範囲を,最大振幅に伸張

最大振幅ボタンをクリックすると、あらかじめマーカで選択されていた範囲を、最大振幅に伸張できます。伸張前の選択範囲のオフセットが0でなかったとき、伸張後のオフセットは0に変化します。

オフセット固定最大振幅ボタンをクリックすれば、オフセットを変化させないで、正又は負のピークが 最大値になるように伸張させることができます。

■その他

伸張の結果±フルスケールを超えるような設定が行われたときは、±フルスケールで波形がクリップ

します。

伸張率が大きすぎると、波形に歪みが発生するときがありますので、ご注意ください。

7.11.3 波形作成例

■横方向の圧縮/伸張

波形の, 横方向の圧縮/伸張の例として, 正弦波を波形表示画面の前 1/4 に圧縮し, バースト波形 を作成します。

手順 1:	[新規任意波形編集パネル]を表示します。
	初期状態では、正弦波が選択されています。
	[周期(P)]の右の数値を, [1]→[4]に変更し, 4 周期の正弦波とします。
	全ページ OK(K)ボタンをクリックして、波形表示画面に戻ります。
手順 2:	[項目選択パネル]上の, 圧縮/伸張ボタンをクリックします。
	[ツール(T)]-[圧縮/伸張(P)]と操作しても、同じ結果となります。
	[項目選択パネル]欄が[圧縮/伸張パネル]に変更されます。
手順 3:	波形表示画面の右下に[4096.000]と表示されています。
	[開始点(S) X=]の右の数字領域は, [0]のままとします。
	[終了点(E) X=]の右の数字領域に, 4096の 1/4の[1024]と設定し, Enter キーを押しま
	す。
	波形表示画面では,波形全体に現れていた4波の正弦波が,前1/4に圧縮された様子が
	見えます。
手順 4:	OK ボタンをクリックして,波形表示画面に戻ります。

- | 手順 4: OK ホタンをクリックして、波形表示画面に戻ります。
- 解説 1: この例では、 [開始点(S) X=]を[0]のままとしたので、 元の波形が、 波形表示画面の波形 の前 1/4 の範囲に圧縮されました。 例えば、[開始点(S) X=][1024]、[終了点(E) X=][2048]と設定すると、元の波形が波 形表示画面の前 1/4 から 1/2 までの範囲に圧縮されます。
- 解説 2: 波形の指定部分を,波形全体に広げることもできます。 あらかじめ、波形表示画面でマーカAとBで波形の一部を選択しておきます。 ここで, 圧縮/伸張画面の全体に伸張ボタンをクリックすると, 選択されていた範囲が波 形全体に伸張されます。

GWINSTEK

■縦方向の圧縮/伸張

波形の縦方向の圧縮/伸張の例として、三角波を拡大し、クリップさせて、台形波を作成します。

手順 1:	[新規任意波形編集パネル]を表示します。
	初期状態では、正弦波が選択されています。
	[波形(T)]コンボボックスから[三角波]を選択します。
	全ページ OK(K)ボタンをクリックして、波形表示画面に戻ります。
手順 2:	
	[ツール(T)]ー[圧縮/伸張(P)]と操作しても,同じ結果となります。
	[項目選択パネル]欄が[圧縮/伸張パネル]に変更されます。
手順 3:	[最大(X)]の右の数字領域を, [32767]→[100000]に設定変更し, Enter キーを押しま
	す。
	[最小(N)]の右の数字領域を, [-32767]→[-100000]に設定変更し, Enter キーを押しま
	す。
	波形表示部では、三角波が縦に拡大され、クリップして台形波が作成される様子が見えま
	す。
手順 4:	OK ボタンをクリックして、波形表示画面に戻ります。

- 解説 1: 手順3で指定した最大/最小の数値によって,波形を縦に圧縮したり,上下に移動させたりすることもできます。伸張や移動の結果,±フルスケールを越えたときは,±フルスケールで波形がクリップします。
- 解説 2: あらかじめ, 波形表示画面で A マーカ(赤)と B マーカ(青)で波形の一部を選択しておくことによって, 波形の一部を圧縮/伸張できます。
- 解説 3: ±フルスケールまで届いていない波形では、オフセット固定最大振幅ボタンや最大振幅ボ タンをクリックすることによって、最大振幅に波形を伸張できます。
- 解説 4: 手順 3 で, 最大を[-100000], 最小を[100000]とすれば, 上下反転した波形を得られま す。
- 解説 5: この例では[最大/最小]で圧縮/伸張率を指定しましたが、[振幅/オフセット]でも指定できます。[振幅/オフセット(O)]の左の〇(オプションボタン)をクリックして④(選択状態)とします。ここで、[振幅(T)]を[200000]、[DCオフセット(D)]を0とすれば、この例と同じ結果が得られます。
- 解説 6: この例では三角波をクリップさせて台形波を作成しましたが,方形波で[遷移]を設定する ことによって,より簡単に台形波を生成することができます。

7.12 システム設定

7.12.1X 軸単位設定

「任意波形編集ツール」では、横軸の表示/設定単位として、波形データのアドレス以外に、時間、 ユーザ単位を使用できます。

時間は, [周波数(Q)]に連動します。

ユーザ単位では,波形データの最初と最後を任意に与え,また単位の名称も任意に設定できます。 横軸ユーザ単位のいくつかの例を,表 7-6に示します。

数式で波形を生成するとき, sin()などの三角関数はラジアン単位となっていますので, 0~ 6.283185 を使用すると便利です。

[単位(X)]の右の▼ボタンをクリックすると、選択できる横軸単位のリストが表示されます。リストの 中をクリックするか、 ↑, ↓, →, ←キーを押して、横軸単位を選択してください。

X 軸単位にユーザ単位を選択すると、 [名称], [最小値]~[最大値]を設定できるようになります。 [名称]右の領域には横軸単位名称として、半角4文字(全角2文字)までの文字列を入力します。 [最小値]~[最大値]右の領域には、ユーザ単位の最小値(波形左端の値)、及び最大値(波形右端の値)の数値を入力します。

範囲	名称(解説)
0~1	周期
-1~1	(縦軸ユーザ単位:±1 で使用するとき, 縦軸
	範囲に合わせるために使用する)
0~360	deg(度, °)
0~400	grad
0~6.283185	rad

表7-6 横軸ユーザ単位例

7.12.2Y 軸単位設定

「任意波形編集ツール」では、縦軸の表示/設定単位として、波形データ(16 bit: -32768~+ 32767)以外に、電圧、ユーザ単位を使用できます。

電圧は, [振幅(A)]に連動します。

ユーザ単位では,波形データの下端と上端を任意に与え,また単位の名称も任意に設定できます。 数式で波形を生成するとき,sin()などの関数のとる値の範囲は±1となっていますので,-1~+1 を使用すると便利です。

[単位(Y)]の右の▼ボタンをクリックすると,選択できる縦軸単位のリストが表示されます。リストの 中をクリックするか, ↑, ↓, →, ←キーを押して,縦軸単位を選択してください。

縦軸単位にユーザ単位を選択すると、[名称]、[最小値]~[最大値]を設定できるようになります。 [名称]右の領域には、縦軸単位の名称として、半角4文字(全角2文字)までの文字列を入力しま す。

[最小値~最大値]右の領域には、ユーザ単位の最小値(波形下端の値)、及び最大値(波形上端の値)の数値を入力します。

7.13 メモリ

「任意波形編集ツール」では、作成した波形データを機器へ転送することができます。

7.13.1メモリ転送

[ツール(T)]-[メモリ転送]と選択するか、ツールバーのメモリ転送ボタンをクリックすることで、メモリ転送ダイアログが表示されます。

設定したい機器側のメモリ番号を指定し、OKボタンをクリックすることで、機器への波形データ転送が開始されます。

---- コメント ------

本ソフトウェアでは, 波形データを 16ビット(-32768 ~ +32767)で扱っていますが, 機器の有 効範囲は 15ビット(-16384 ~ +16383)となります。このため, 本ソフトウェアでは, 波形転送 時に 15ビット相当へ圧縮しています。

7.13.2メモリクリア

[ツール(T)]-[メモリクリア]と選択するか、ツールバーのメモリクリアボタンをクリックすることで、メモリクリアダイアログが表示されます。

クリアを行いたい機器側のメモリ番号を指定し、 OK ボタンをクリックすることで、機器内の選択メモリ 番号データがクリアされます。

メモリ転送	メモリクリア
メモリ番号 1 ▼	メモリ番号 1 🔹
OK Cancel	OK Cancel

図7-13 メモリ転送/メモリクリアダイアログ

メモリクリアにより、各任意波形メモリはそれぞれ以下のように初期化されます。

ARB1 ~ ARB8 :正弦波 ARB9 ~ ARB12 :方形波 ARB13 ~ ARB16 :三角波

8.1	CD-ROM の管理	80
8.2	破損 CD-ROM の交換	80
8.3	バージョンの確認	80

8.1 CD-ROM の管理

CD-ROMは、下記の事項に注意して丁寧に取り扱ってください。 直射日光の当たる場所や、高温・多湿の場所に保管しないでください。

- 塵埃の少ない場所で使用し, 保管してください。
- 記録面には、直接手を触れないでください。損傷やエラーの原因になります。
- 付着した汚れは, 柔らかい乾いた布で拭きとってください。ベンジンなどの溶剤は使用しないで ください。
- ●保管は水平又は垂直に行い、CD-ROM がねじれたり曲がったりしないようにしてください。
- CD-ROM のレーベル面に記入するときは、フェルトペンをご使用ください(ボールペンや鉛筆など先の固いペンを使わないでください)。

8.2 破損 CD-ROM の交換

CD-ROMを破損したときには、当社又は当社代理店にご連絡ください。 有償で、新しい CD-ROM と交換させていただきます。

8.3 バージョンの確認

[環境設定]を押して表示されるダイアログウィンドウの右上に,本ソフトウェアのバージョンが表示されます。

System Setting	
ーモデル設定 — モデル	Ver. 1.00
通信設定 通信種類	VISA •
ОК	キャンセル

図8-1 環境設定ダイアログウィンドウ

お問い合わせ

製品についてのご質問等につきましては、下記まで お問い合わせください。

株式会社テクシオ・テクノロジー

本社:〒222-0033 横浜市港北区新横浜 2-18-13

藤和不動産新横浜ビル 7F

[HOME PAGE] : http://www.instek.jp/

E-Mail:info@texio.co.jp

アフターサービスに関しては、下記サービスセンターへ

サービスセンター:

〒222-0033 横浜市港北区新横浜 2-18-13

藤和不動産新横浜ビル 8F

TEL. 045-620-2786 FAX.045-534-7183