LCR メータ

LCR-6300/6200/6100/6020/6002

ユーザーマニュアル

Version 1.00

ISO-9001 CERTIFIED MANUFACTURER

G凹INSTEK

保証

LCRメータ LCR-6000シリーズ

この度はGood Will Insturument社の計測器をお買い上げいただきありが とうございます。今後とも当社の製品を末永くご愛顧いただきますようお 願い申し上げます。

LCR-6000 シリーズは、正常な使用状態で発生する故障について、お買 上げの日より1 年間に発生した故障については無償で修理を致します。 ただし、液晶ディスプレイは1年間、ケーブル類など付属品は除きます。

また、保証期間内でも次の場合は有償修理になります。

1. 火災、天災、異常電圧等による故障、損傷。

- 2. 不当な修理、調整、改造がなされた場合。
- 3. 取扱いが不適当なために生ずる故障、損傷。
- 4. 故障が本製品以外の原因による場合。
- 5. お買上げ明細書類のご提示がない場合。

お買上げ時の明細書(納品書、領収書など)は保証書の代わりとなりますので、大切に保管してください。

また、校正作業につきましては有償にて受け賜ります。

この保証は日本国内で使用される場合にのみ有効です。

This warranty is valid only Japan.

本マニュアルについて

- ご使用に際しては、必ず本マニュアルを最後までお読みいただき、正しくご使用ください。また、いつでも見られるよう保存してください。
- 本書の内容に関しましては万全を期して作成いたしましたが、万一不審 な点や誤り、記載漏れなどがございましたらご購入元または弊社ま でご連絡ください。

2017年7月

このマニュアルは著作権によって保護された知的財産情報を含んでいま す。当社はすべての権利を保持します。当社の文書による事前承諾な しに、このマニュアルを複写、転載、翻訳することはできません。

このマニュアルに記載された情報は印刷時点のものです。製品の仕様、 機器、および保守手順は、いつでも予告なしで変更することがあります ので予めご了承ください。

Microsoft, Microsoft® Excelおよび Windows は、米国 Microsoft Corporation の米国、日本およびその他の国における登録商標または商 標です。

Good Will Instrument Co., Ltd.

No. 7-1, Jhongsing Rd., Tucheng Dist., New Taipei City 236, Taiwan.

安全について

はじめに

製品を安全にご使用いただくため、ご使用前に本説明書を最後までお読 みください。製品の正しい使い方をご理解のうえ、ご使用ください。 本説明書をご覧になっても、使い方がよくわからない場合は、取扱説明書 の末ページに記載された、当社・サービスセンターまでお問合せください。 本説明書をお読みになった後は、いつでも必要なときご覧になれるように、 保管しておいてください。

■絵表示について

本説明書および製品には、製品を安全に使用するうえで必要な警告、および注意事項を示す、下記の絵表示が表示されています。

<絵表示>	
	製品および本説明書にこの絵表示が表示されている箇所 がある場合は、その部分で誤った使い方をすると使用者の 身体、および製品に重大な危険を生ずる可能性があること をあらわします。この絵表示部分を使用する際は、必ず、 本説明書を参照する必要があります。
▲ 警告	この表示を無視して、誤った使い方をすると、使用者が死 亡または重傷を負う可能性があり、その危険を避けるため の警告事項が記載されていることをあらわします。
▲ 注意	この表示を無視して、誤った使い方をすると、使用者が軽度 の傷害を負うか、または製品に損害を生ずる恐れがあり、 その危険を避けるための注意事項が記載されていることを あらわします。
•	保護導体端子
÷	シャーシ(フレーム)端子

製品を安全にご使用いただくために

お客様または第三者が、この製品の誤使用、使用中に生じた故障、その他の不具合、または、この製品の使用によって受けられた損害については、法令上の賠償責任が認められる場合を除き、当社は一切その責任を負いませんので、あらかじめご了承ください。

■ 製品のケースおよびパネルは外さないでください

製品のケースおよびパネルは、いかなる目的があっても、使用者は絶対に 外さないでください。使用者の感電事故、および火災を発生する危険があり ます。

■ 製品を使用する際のご注意

下記に示す使用上の注意事項は、使用者の身体・生命に対する危険、および製品の損傷・劣化などを避けるためのものです。必ず下記の警告・注意 事項を守ってご使用ください。

■ 電源に関する警告事項

● 電源電圧について

製品の定格電源電圧は、AC100VからAC230VまたはAC240Vです。

製品個々の定格電圧は製品背面と本説明書"定格"欄の表示をご確認く ださい。

日本国内向けおよびAC125Vまでの商用電源電圧地域向けモデルに付属 された電源コードは定格AC125V仕様のため、AC125Vを超えた電源電圧 で使用される場合は電源コードの変更が必要になります。電源コードを AC250V仕様のものに変更しないで使用された場合、感電・火災の危険が 生じます。

製品が電源電圧切換え方式の場合、電源電圧の切換え方法は、製品個 々に付属している取扱説明書の電圧切換えの章をご覧ください。

● 電源コードについて

(重要)同梱、もしくは製品に取り付けられている電源コードは本製品以外 に使用できません。

付属の電源コードが損傷した場合は、使用を中止し、当社・サービスセン ターまでご連絡ください。電源コードが損傷したままご使用になると、感電 ・火災の原因となることがあります。

製品を安全にご使用いただくために

● 保護用ヒューズについて

入力保護用ヒューズが溶断した場合、製品は動作しません。 外部にヒューズホルダが配置されている製品は、ヒューズを交換すること ができます。交換方法は、本説明書のヒューズ交換の章をご覧ください。 交換手段のない場合は、使用者は、ヒューズを交換することができません。 ヒューズが切れた場合は、ケースを開けず、当社サービスセンターまでご 連絡ください、当社でヒューズ交換をいたします。 使用者が間違えてヒューズを交換された場合、火災を生じる危険があり ます。

■ 接地に関する警告事項

製品の前面パネルまたは、背面パネルにGND端子がある場合は、安全に 使用するため、必ず接地してからご使用ください。

■ 設置環境に関する警告事項

● 動作温度・湿度について

製品は、"定格"欄に示されている動作温度の範囲内でご使用ください。 製品の通風孔をふさいだ状態や、周辺の温度が高い状態で使用すると、 火災の危険があります。 製品は、"定格"欄に示されている動作湿度の範囲内でご使用ください。 湿度差のある部屋への移動時など、急激な湿度変化による結露にご注 意ください。また、濡れた手で製品を操作しないでください。感電および火

● ガス中での使用について

災の危険があります。

可燃性ガス、爆発性ガスまたは蒸気が発生あるいは貯蔵されている場所、 およびその周辺での使用は、爆発および火災の危険があります。このよう な環境下では、製品を動作させないでください。

また、腐食性ガスが発生または充満している場所、およびその周辺で使 用すると製品に重大な損傷を与えますので、このような環境でのご使用は お止めください。

● 設置場所について

傾いた場所や振動がある場所に置かないでください。落ちたり、倒れたり して破損や怪我の原因になります。

製品を安全にご使用いただくために

■ 異物を入れないこと

通風孔から製品内部に金属類や燃えやすい物などを差し込んだり、水をこ ぼしたりしないでください。

■ 使用中の異常に関する警告事項

製品を使用中に、製品より"発煙"、"発火"、"異臭"、"異音"などの異常を生じた場合は、ただちに使用を中止してください。電源スイッチを切り、電源コードのプラグをコンセントから抜くなどして、電源供給を遮断した後、当社・サービスセンターまで、ご連絡ください。

■入出力端子について

入力端子には、製品を破損しないために最大入力の仕様が決められていま す。本説明書の"定格"欄に記載された仕様を超えた入力は供給しないでく ださい。また、出力端子へは外部より電力を供給しないでください。製品故 障の原因になります。入力端子へ裸線をつながないでください。端子を破損 する場合があります。

■ 校正について

製品は工場出荷時、厳正な品質管理のもと性能・仕様の確認を実施してい ますが、部品などの経年変化などにより、その性能・仕様に多少の変化が 生じることがあります。製品の性能・仕様を安定した状態でお使いいただく ため、定期的な校正をお勧めいたします。

製品校正についてのご相談は、当社サービスセンターへご連絡ください。

■ 日常のお手入れについて

製品のケース、パネル、つまみなどの汚れを清掃する際は、シンナーやベンジンなどの溶剤は避けてください。

塗装がはがれ、樹脂面が侵されることがあります。

ケース、パネル、つまみなどを拭くときは、中性洗剤を含ませた柔らかい布で 軽く拭き取ってください。

また、清掃のときは製品の中に水、洗剤、その他の異物などが入らないよう ご注意ください。

製品の中に液体、金属などが入ると、感電および火災の原因となります。

清掃のときは電源コードのプラグをコンセントから抜くなどして、電源供給を遮断してからおこなってください。

以上の警告事項および注意事項を守り、正しく安全にご使用ください。

また、本説明書には個々の項目でも、注意事項が記載されていますので、使 用時にはそれらの注意事項を守り正しくご使用ください。

本説明書の内容でご不明な点、またはお気付きの点がありましたら、当社・サービスセンターまでご連絡いただきますよう、併せてお願いいたします。

目次

安全	全について.		i
	はじめに		i
1.	ご使用する	る前に	9
	1.1 環境要	件	9
	1.2 ハンドル	ルの取扱について	10
2.	概要		
	2.1 製品概		11
	2.2 主な仕	- ~ 	
	2.2.1	測定項目	
	2.2.2	等価回路(Equivalent Circuit)	12
	2.2.3	測定レンジについて	12
	2.2.4	測定スピード	13
	2.2.5	トリガモード	13
	2.2.6	基本確度	13
	2.2.7	表示範囲	13
	2.3 測定信	号	14
	2.3.1	測定信号周波数レンジと型式	14
	2.3.2	測定信号レベル	14
	2.3.3	出力インピーダンス設定	14
	2.4 メイン機	幾能	15
	2.4.1	補正機能	15
	2.4.2	コンパレータ機能 (BINソート)	15
	2.4.3	リスト掃引測定	16
	2.5 その他	の機能	16
	2.5.1	ファイル操作	16
	2.5.2	キーロック	16
	2.5.3	RS-232	16
	2.6 画面イン	メージの保存	16
	2.6.1	USBホストポート	16
	2.6.2	DCバイアス電圧	
	2.6.3	アクセサリ	
	2.6.4	オフション	18
3.	先ず初めに		19
	3.1 前面パ	パネル	19

	3.2 背面パ	ネル	20
	3.3 電源のス	オン/オフ	20
	3.3.1	電源を投入する	20
	3.3.2	電源を切る	20
	3.4 ウオーム	ムアップ時間	20
	3.5 被測定	物(DUT)を接続について	21
4.	測定キー		22
	4.1 [MEAS	DISPLAY]ページ	22
	4.1.1	測定パラメータ [FUNC]	23
	4.1.2	インピーダンスの範囲 [RANGE]	24
	4.1.3	テスト周波数 [FREQ]	26
	4.1.4	トリガモード [TRIG]	
	4.1.5	テスト信号電圧/電流レベル [LEVEL]	29
	4.1.6	測定速度 [SPEED]	
	4.1.7	測定ログ [LOG]	32
	4.2 [OPEN/	/SHORT] ページ	35
	4.2.1	オープン補正 [OPEN]	
	4.2.2	ショート補正 [SHORT]	37
	4.2.3	スポット補正	
	4.3 [LIST S	ETUP] ページ	40
	4.3.1	測定機能 [FUNC]	41
	4.3.2	テストモード [MODE]	41
	4.3.3	リスト掃引測定のパラメータ	42
	4.3.4	リストポイントとリミットモード	43
	4.4 [LIST M	IEAS] ページ	44
	4.4.1	トリガモード [TRIG]	45
	4.4.2	テストモード [MODE]	46
	4.4.3	レンジモード [RANGE]	47
	4.4.4	測定ログ [LOG]	47
	4.5 [ENLAR	RGE DISPLAY] ページ	48
	4.5.1	拡大表示	49
	4.5.2	ダイレクト比較機能	50
5.	SETUPキー		51
	5.1 [MEAS	SETUP] ページ	51
	5.1.1	ソース出力インピーダンス [SRC RES]	53
	5.1.2	平均回数 [AVG]	53
	5.1.3	DCバイアス電圧 [BIAS]	54

	5.1.4	オートLCZ機能 [AUTO LCZ]	54
	5.1.5	モニタ 1とモニタ2 [MON 1][MON 2]	55
	5.1.6	測定遅延 [DELAY]	56
	5.1.7	オートレベルコントロール [ALC]	56
	5.1.8	Nominal値[NOMINAL]	57
	5.2 [BIN SE	:TUP] ページ	58
	5.2.1	測定機能 [FUNC]	59
	5.2.2	コンパレータ機能 ON/OFF	59
	5.2.3	補助 Bin [AUX]	61
	5.2.4	プライマリパラメータのコンパレータリミット モード[MODE]	61
	5.2.5	許容値モードのノミナル値	64
	5.2.6	ブザー機能	64
	5.2.7	BINの総数 [#-BINS]	65
	5.2.8	上限と下限リミット	66
	5.3 [BIN ME	EAS] ページ	66
	5.3.1	コンパレータ機能のON/OFF	67
	5.3.2	補助Bin [AUX]	68
	5.4 [BIN CO)UNT] ページ	68
	5.4.1	カウンタ機能 [COUNT]	69
6.	システム構	成	70
	6.1 [SYSTE	M CONFIG] ページ	70
	6.1.1	システムの日付と時間を設定する	71
	6.1.2	アカウント設定	72
	6.1.3	キーブザーの設定	73
	6.1.4	RS-232Cのボーレートを設定する	74
	6.1.5	ハンドシェークの確認	75
	6.1.6	エラーコード	76
	6.1.7	自動応答(Result)設定	77
	6.1.8	データバッファ	77
	6.2 [SYSTE	M INFO] ページ	78
7.	ファイル操	作	79
	7.1 [FILE] <	ページ	79
	7.1.1	[MEDIA]	80
	7.1.2	- 開始時にファイルを呼び出す [AUTO RECALL]	81
	7.1.3	オートデータセーブ [AUTO SAVE]	81
	7.1.4	 ファイル操作	82

8.1 ピンの割り当て 83 8.2 接続 85 8.3 ハンドラインターフェースのタイミングチャート 87 9. 例 88 9.1 基本的な測定手順 88 9.2 例 89 10 リモートコントロール 93 10.1 RS-232C(こついて 93 10.2 ボーレートを設定する 94 10.3 SCPI言語 94 11. コマンドリファレンス 95 11.1 ターミネータ 95 11.2 表記規則と定義 95 11.3 コマンドリファレンス 95 11.4 ヘッダとパラメータ 98 11.5 コマンドリファレンス 100 11.6 DISPlay サブシステム 103 11.7 FUNCtion サブシステム 103 11.7 FUNCtion:MPedance:AUTO 106 11.7.1 FUNCtion:MPedance:AUTO 106 11.7.2 FUNCtion:MPedance:RANGe 106 11.7.4 FUNCtion:MONItor1 /2 107 11.7.5 FUNCtion:MONItor1 /2 107 11.7.7 FREQ 108 11.8.1 LEVei:VOLTage (=VOLTage[:LEVel]) 109 11.8.1 LEVei:URRent (=CURRent[:LEVel]) 110 11.8.1 LEVei:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVei:ALC (=AMPintude:ALC) 111 </th <th>8.</th> <th>ハンド</th> <th>インターフェース</th> <th></th> <th>83</th>	8.	ハンド	インターフェース		83
8.2 接続 85 8.3 ハンドラインターフェースのタイミングチャート 87 9. 例 88 9.1 基本的な測定手順 88 9.2 例 89 10 リモートコントロール 93 10.1 RS-232Cについて 93 10.2 ボーレートを設定する 94 10.3 SCPI言語 94 11.3 コマンドリファレンス 95 11.4 ターミネータ 95 11.5 コマンドリファレンス 95 11.4 ヘッダとパラメータ 98 11.5 コマンドリファレンス 100 11.6 DISPlay サブシステム 103 11.6.1 DISP:LINE 103 11.7 FUNCtion サブシステム 105 11.7.1 FUNCtion:IMPedance:AUTO 106 11.7.2 FUNCtion:IMPedance:RANGe 106 11.7.3 FUNCtion:IMPedance:RANGe 106 11.7.4 FUNCtion:CR:RANGe 106 11.7.5 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel: サブシステム 109 11.8.1 LEVel: CURRent (=CURRent[:LEVel]) 110 11.8.1 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.1 LEVel:SRESistance (= VOLTage:SRESistance)<		8.1 ピン	の割り当て		83
8.3 ハンドラインターフェースのタイミングチャート 87 9. 例 88 9.1 基本的な測定手順 88 9.2 例 89 10 リモートコントロール 93 10.1 RS-2320について 93 10.2 ボーレートを設定する 94 10.3 SCPI言語 94 11. コマンドリファレンス 95 11.1 ターミネータ 95 11.2 表記規則と定義 95 11.3 コマンド構造 95 11.4 ヘッダとパラメータ 98 11.5 コマンドリファレンス 100 11.6 DISPlay サブシステム 103 11.6.1 DISPLINE 103 11.7 FUNCtion サブシステム 105 11.7.1 FUNCtion.MPedance:AUTO 105 11.7.2 FUNCtion:MPedance:RANGe 106 11.7.3 FUNCtion:CR:RANGe 106 11.7.4 FUNCtion:CR:RANGe 106 11.7.5 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel:サブシステム 109 11.8.1 LEVel:VOLTage (=VOLTage[:LEVel]) 109 11.8.1 LEVel:CURRent (=CURRent[:LEVel]) 109 11.8.1 LEVel:SRESistance (= VOLTage:SRESistance) 110 </td <td></td> <td>8.2 接網</td> <td></td> <td></td> <td>85</td>		8.2 接網			85
9. 例		8.3 /\2	ドラインターフェース	.のタイミングチャート	87
9.1 基本的な測定手順 88 9.2 例 89 10 リモートコントロール 93 10.1 RS-232CIこついて 93 10.2 ボーレートを設定する 94 10.3 SCPI言語 94 11. コマンドリファレンス 95 11.1 ターミネータ 95 11.2 表記規則と定義 95 11.3 コマンド構造 95 11.4 ヘッダとパラメータ 95 11.5 コマンドリファレンス 100 11.6 DISPlay サブシステム 103 11.6.1 DISP-LINE 103 11.6.2 DISP-PAGE 103 11.7 FUNCtion サブシステム 105 11.7.1 FUNCtion: 105 11.7.2 FUNCtion:IMPedance:AUTO 106 11.7.3 FUNCtion:IMPedance:RANGe 106 11.7.4 FUNCtion:CRANGe:AUTO 107 11.7.5 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel: サブシステム 109 11.8.1 LEVel: VOLTage (=VOLTage[:LEVel]) 109 11.8.2 LEVel:CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVel:ALC (=AMPIltude:ALC	9.	例			
9.2 例 89 10 リモートコントロール 93 10.1 RS-232CIこついて 93 10.2 ボーレートを設定する 94 10.3 SCPI言語 94 10.3 SCPI言語 94 11. コマンドリファレンス 95 11.1 ターミネータ 95 11.2 表記規則と定義 95 11.3 コマンド構造 95 11.4 ヘッダとバラメータ 95 11.5 コマンドリファレンス 100 11.6 DISPlay サブシステム 103 11.6.1 DISP-LINE 103 11.6.2 DISP.PAGE 103 11.7 FUNCtion サブシステム 105 11.7.1 FUNCtion:IMPedance:AUTO 106 11.7.3 FUNCtion:IMPedance:RANGe 106 11.7.4 FUNCtion:OCR:RANGe:AUTO 106 11.7.5 FUNCtion:RANGe:AUTO 106 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel:サブシステム 109 11.8.1 LEVel:VOLTage (=VOLTage[:LEVel]) 109 11.8.2 LEVel:CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVel:ALC (=AMPlitude:ALC) 111 <td></td> <td>9.1 基本</td> <td>的な測定手順</td> <td></td> <td></td>		9.1 基本	的な測定手順		
10 リモートコントロール 93 10.1 RS-232Clこついて 93 10.2 ボーレートを設定する 94 10.3 SCPI 言語 94 10.3 SCPI 言語 94 11. コマンドリファレンス 95 11.1 ターミネータ 95 11.2 表記規則と定義 95 11.3 コマンド構造 95 11.4 ヘッダとパラメータ 98 11.5 コマンド構造 98 11.5 コマンド構造 97 11.6 DISPlay サブシステム 100 11.6 DISPLAGE 103 11.6.1 DISP:PAGE 103 11.6.2 DISP:PAGE 103 11.7 FUNCtion サブシステム 105 11.7.1 FUNCtion:IMPedance:AUTO 106 11.7.2 FUNCtion:IMPedance:RANGe 106 11.7.3 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel:VOLTage (=VOLTage[:LEVel]) 109 11.8.1 LEVel:VOLTage (=V					
10.1 RS-232CIこついて	10.	リモー	コントロール		93
10.2 ボーレートを設定する		10.1	RS-232Cについて.		
10.3 SCPI 言語 94 11. コマンドリファレンス 95 11.1 ターミネータ 95 11.2 表記規則と定義 95 11.3 コマンド構造 95 11.4 ヘッダとパラメータ 98 11.5 コマンド構造 95 11.6 DISPlay サブシステム 100 11.6 DISP:LINE 103 11.6.1 DISP:PAGE 103 11.6.2 DISP:PAGE 103 11.7 FUNCtion サブシステム 105 11.7.1 FUNCtion:IMPedance:AUTO 106 11.7.2 FUNCtion:IMPedance:RANGe 106 11.7.3 FUNCtion:RANGe:AUTO 107 11.7.5 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel サブシステム 109 11.8.1 LEVel:VOLTage (=VOLTage[:LEVel]) 109 11.8.2 LEVel:CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVel:ALC (=AMPlitude:ALC)		10.2	ボーレートを設定す	る	94
11. コマンドリファレンス		10.3	SCPI 言語	-	94
11.1 ターミネータ	11.	コマン	リファレンス		95
11.2 表記規則と定義		11.1	ターミネータ		95
11.3 コマンド構造		11.2	表記規則と定義		95
11.4 ヘッダとパラメータ		11.3	コマンド構造		95
11.5 コマンドリファレンス 100 11.6 DISPlay サブシステム 103 11.6.1 DISP:LINE 103 11.6.2 DISP:PAGE 103 11.6.2 DISP:PAGE 103 11.7 FUNCtion $\forall \vec{J} \triangleright \vec{\lambda} \neq \vec{\lambda}$ 105 11.7.1 FUNCtion: $\forall \vec{J} \triangleright \vec{\lambda} \neq \vec{\lambda}$ 105 11.7.2 FUNCtion: IMPedance: AUTO 106 11.7.3 FUNCtion: IMPedance: RANGe 106 11.7.4 FUNCtion: DCR: RANGe 106 11.7.5 FUNCtion: RANGe: AUTO 107 11.7.6 FUNCtion: MONitor 1 /2 107 11.7.7 FREQ 108 11.8 LEVel $\forall \vec{J} \triangleright \vec{\lambda} \neq \vec{\lambda} = (\text{CURRent}[:LEVel])$ 109 11.8.1 LEVel: VOLTage (=VOLTage[:LEVel]) 109 11.8.2 LEVel: CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel: SRESistance (= VOLTage: SRESistance) 110 11.8.4 LEVel: ALC (=AMPlitude: ALC) 111		11.4	ヘッダとパラメータ.		98
11.6 DISPlay サブシステム 103 11.6.1 DISP:LINE 103 11.6.2 DISP:PAGE 103 11.6.2 DISP:PAGE 103 11.7 FUNCtion $\forall J \lor \chi \neg \zeta \neg \Delta$ 105 11.7.1 FUNCtion: $\forall J \lor \chi \neg \zeta \neg \Delta$ 105 11.7.2 FUNCtion: $iMPedance: AUTO$ 106 11.7.3 FUNCtion: $iMPedance: RANGe$ 106 11.7.4 FUNCtion: $iDCR: RANGe$ 106 11.7.5 FUNCtion: $RANGe: AUTO$ 107 11.7.6 FUNCtion: $MONitor 1/2$ 107 11.7.7 FREQ 108 11.8 LEVel $\forall J \lor \chi \neg \zeta \wedge \Delta$ 109 11.8.1 LEVel: $VOLTage (=VOLTage[:LEVel])$ 109 11.8.2 LEVel: CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVel:ALC (=AMPlitude:ALC) 111		11.5	コマンドリファレンス		100
11.6.1 DISP:LINE 103 11.6.2 DISP:PAGE 103 11.7 FUNCtion サブシステム 105 11.7.1 FUNCtion:IMPedance:AUTO 105 11.7.2 FUNCtion:IMPedance:RANGe 106 11.7.3 FUNCtion:IMPedance:RANGe 106 11.7.4 FUNCtion:DCR:RANGe 106 11.7.5 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel サブシステム 109 11.8.1 LEVel:VOLTage (=VOLTage[:LEVel]) 109 11.8.2 LEVel:CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVel:ALC (=AMPlitude:ALC) 111		11.6	DISPlay サブシステ	·᠘	103
11.6.2 DISP:PAGE 103 11.7 FUNCtion サブシステム 105 11.7.1 FUNCtion 105 11.7.2 FUNCtion:IMPedance:AUTO 106 11.7.3 FUNCtion:IMPedance:RANGe 106 11.7.4 FUNCtion:DCR:RANGe 106 11.7.5 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel サブシステム 109 11.8.1 LEVel:VOLTage (=VOLTage[:LEVel]) 109 11.8.2 LEVel:CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVel:ALC (=AMPlitude:ALC) 111		11.0	1 DISP:LINE		103
11.7 FUNCtion サブシステム 105 11.7.1 FUNCtion 105 11.7.2 FUNCtion:IMPedance:AUTO 106 11.7.3 FUNCtion:IMPedance:RANGe 106 11.7.4 FUNCtion:DCR:RANGe 106 11.7.5 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel サブシステム 109 11.8.1 LEVel:VOLTage (=VOLTage[:LEVel]) 109 11.8.2 LEVel:CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVel:ALC (=AMPlitude:ALC) 111		11.0	2 DISP:PAGE		103
11.7.1 FUNCtion. 105 11.7.2 FUNCtion:IMPedance:AUTO 106 11.7.3 FUNCtion:IMPedance:RANGe. 106 11.7.4 FUNCtion:DCR:RANGe 106 11.7.5 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel サブシステム 109 11.8.1 LEVel:VOLTage (=VOLTage[:LEVel]) 109 11.8.2 LEVel:CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVel:ALC (=AMPlitude:ALC) 111		11.7	FUNCtion サブシス	テム	105
11.7.2 FUNCtion:IMPedance:AUTO 106 11.7.3 FUNCtion:IMPedance:RANGe 106 11.7.4 FUNCtion:DCR:RANGe 106 11.7.5 FUNCtion:RANGe:AUTO 107 11.7.6 FUNCtion:MONitor1 /2 107 11.7.7 FREQ 108 11.8 LEVel $\forall \forall \forall$		11.	1 FUNCtion		105
11.7.3 FUNCtion:IMPedance:RANGe		11.	2 FUNCtion:IMP	edance:AUTO	106
11.7.4 FUNCtion:DCR:RANGe		11.	3 FUNCtion:IMP	edance:RANGe	106
11.7.5 FUNCtion:RANGe:AUTO		11.	4 FUNCtion:DCF	RANGe	106
11.7.6 FUNCtion:MONitor1 /2		11.	5 FUNCtion:RAN	IGe:AUTO	107
11.7.7 FREQ		11.	6 FUNCtion:MO	Nitor1 /2	107
11.8 LEVel サフシステム		11.	7 FREQ		108
11.8.1 LEVel:VOLTage (=VOLTage[:LEVel])		11.8			
11.8.2 LEVel:CURRent (=CURRent[:LEVel]) 110 11.8.3 LEVel:SRESistance (= VOLTage:SRESistance) 110 11.8.4 LEVel:ALC (=AMPlitude:ALC) 111		. 			
11.8.4 LEVel:ALC (=AMPlitude:ALC)		11.0		it (=GURRent[:LEVel])	110
		.) 			UII
1185 LEVal-MODe2 111		11.0			111 111
11.0.5 LL VELWODE:		11 0		テム	110
11.9.1 APERture:RATE? 112		11 9	1 APFRture RAT	· /	

11.9.2	APERture:AVG?				
11.10 FET	ГСһ サブシステム				
11.10.1	FETCh?				
11.10.2	FETCh:IMPedance?				
11.10.3	FETCh:MAIN?				
11.10.4	FETCh:MONitor1? /2?				
11.10.5	FETCh:MONitor?				
11.10.6	FETCh:LIST?				
11.11 CO	MParator サブシステム				
11.11.1	COMParator:STATe				
11.11. 2	COMParator:MODE				
11.11.3	COMParator:AUX				
11.11.4	COMParator:BINS				
11.11.5	COMParator:TOLerance:NOMinal				
11.11.6	COMParator:TOLerance:BIN				
11.11.7	COMParator:SLIM				
11.11.8	COMParator:BEEP				
11.11.9	COMParator:OPEN				
11.12 LIS	T サブシステム				
11.12.1	LIST:PARAmeter				
11.12.2	LIST:STAT				
11.12.3	LIST:BAND				
11.13 CO	RRection サブシステム				
11.13.1	CORRection:OPEN				
11.13.2	CORRection:OPEN:STATe				
11.13.3	CORRection:SHORt				
11.13.4	CORRection:SHORt:STATe				
11.13.5	CORRection:SPOT:FREQuency				
11.13.6	CORRection:SPOT:OPEN				
11.13.7	CORRection:SPOT:SHORt				
11.14 TRI	lGger サブシステム				
11.14.1	TRIGger[:IMMediate]				
11.14.2	TRIGger:SOURce				
11.14.3	TRIGger:DELAY				
11.15 BIA	11.15 BIAS サブシステム				
11.15.1	BIAS				
11.16 ファ	·イル サブシステム				

	11.16.1	FILE?	
	11.16.2	FILE:SAVE	
	11.16.3	FILE:LOAD	
	11.16.4	FILE:DELete	
	11.17 ERF	Ror サブシステム	
	11.17.1	ERRor?	
	11.18 SYS	STEM サブシステム	
	11.18.1	SYSTem:SHAKehand	
	11.18.2	SYSTem:CODE	
	11.18.3	SYSTem:KEYLock	
	11.18.4	SYSTem:RESult	
	11.19 ⊐モ	シコマンド	
	11.19.1	*IDN?	
	11.19.2	*TRG	
	11.19.3	*SAV	
	11.19.4	*RCL	
12.	仕様		131
	12.1 一舟	9仕様	
	12.2 寸法	去	
13.	確度		136
	13.1 確度	E	
	13.1.1	L, C, R Z 測定確度	
	13.1.2	Dの確度	
	13.1.3	Qの確度	
	13.1.4	hetaの確度	
	13.1.5	Rpの確度	
	13.1.6	Rsの確度	
	13.2 測5	と確度に影響を与える補正係数	
14.	EU Declar	ration of Conformity	143

义	\mathcal{O}^{-1}		
义	1-1	ハンドルを取り外す方法	10
义	2-1	Disk Ready表示	17
义	2-2	画面の保存	17
义	3-1	前面パネル	19
义	3-2	背面パネル	20
义	3-3	Test FixtureおよびDUTを接続する	21
义	4-1	[MEAS DISPLAY] ページ	22
义	4–2	[OPEN/SHORT] ページ	35
义	4–3	浮遊アドミタンス	36
义	4–4	残留インピーダンス	37
义	4–5	[LIST SETUP] ページ	41
义	4–6	[LIST MEAS] ページ	44
义	4-7	[ENLARGE DISPLAY] ページ	49
义	4–8	ダイレクト比較の設定	50
义	5-1	[MEAS SETUP] ページ	51
义	5-2	[BIN SETUP] ページ	59
义	5-3	- コンパレータのワークフロー	60
义	5-4	絶対値(Absolute)モード	62
义	5-5	パーセンテージモード	62
义	5-6	シーケンシャルモード	63
义	5-7	[BIN MEAS] ページ	67
义	5-8	[BIN COUNT] ページ	69
义	6-1	[SYSTEM CONFIG] ページ	71
义	6-2	[SYSTEM INFO] ページ	78
义	7-1	[FILE] ページ	79
义	8-1	ピンの割り当て	83
义	8-2	入力ピンの回路	86
义	8-3	出力ピンの回路(Binソート、Index, EOM)	86
义	8-4	タイミングチャート	87
义	9-1	基本の測定手順	89
义	9-2	測定結果	92
义	10-1	背面パネルのRS-232Cポート	93
义	11-1	コマンドツリー例	95
义	11-2	コマンドツリーの例	103
义	11-3	FUNCtion サブシステムの階層	105
义	11-4	FREQサブシステムの階層	108
义	11-5	LEVel サブシステムの階層	109
义	11-6	APERture サブシステムコマンドの階層	112
义	11-7	FETCh サブシステムコマンドの階層	113
义	11-8	COMParator サブシステムコマンドの階層	116
义	11-9	LIST サブシステムコマンドの階層	120
义	11-10	CORRection サブシステムコマンドの階層	122
义	11-11	TRIGgerサブシステムコマンドの階層	125

図 11-12	BIAS サブシステムコマンドの階層	
図 11-13	FILE サブシステムコマンドの階層	
図 12-1	寸法	
図 13-1	基本測定確度 A	
図 13-2	基本精度補正係数Ar用テーブル	

表の一覧

主 0_1	生命回敗	10
衣 ∠- I 主 0 0	当日日日	10
衣 ∠⁻∠ ま 0_1	 測定レンン 前面パクリの説明 	10
衣 3⁻।	削回ハイルの説明	19
表 3-2		20
表 4-1	測定パラメータの組み合わせ (プライマリーセカンダリ)	23
表 4−2	モニタパラメータの種類	23
表 4-3	測定とモニタパラメータについて	23
表 4-4	インピーダンスのレンジモード	24
表 4-5	ホールド状態のときインピーダンスレンジための有効測定レンジ。	25
表 4-6	ホールド状態のときインピーダンスレンジためのDCR FUNCの有効測定し	ン
	ジ。	25
表 4-7	周波数レンジとテスト周波数ポイント	26
表 4-8	LCR-6300でINCR+/ DECR-を使用して選択することができるプリセットテ	ス
	ト周波数	27
表4-9	LCR-6200でINCR+/ DECR-を使用して選択することができるプリセットテ	ス
	ト周波数	27
表4-10	LCR-6100でINCR+/ DECR-を使用して選択することができるプリセットテ	ス
	ト周波数	27
表4-11	LCR-6020でINCR+/ DECR-を使用して選択することができるプリセットテ	ス
	卜周波数	27
表 4-12	LCR-6002でINCR+/ DECR-を使用して選択することができるプリセット	テ
		.28
表 4-13	テスト電圧/電流レベル·INCR+/DECR-に設定可能なプリレベル。	29
表 8-1	ハンドラインターフェース信号~出力ピン	84
去 8-2	・シーン・シーン にって ログビン	85
表 8-3	・シーン・シーン・シーン・ハロ・シーンパロ・シーン・ハリーン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
去 8-4	タイミング完美	
表 0 ∓ 表 11–1	アイマンア 定我	
3.11 − − 表 12−1	」 次にら、Matchier Milenones インピーグンフ は 正	1/1
13、13 1 ま 12_0	コンピー アンハヨー 示奴	1/10
主 12_2	温皮mμ示数 (C)がば問いのはこの物	142
12 13-3	Λ ─ ノン/ ンコ─ ΓΓリミンツ 1冊目 Γ [0] 1冊 止 示 奴	142
衣 いつ-4	ノ ヘトリートのフーノル 女に ぼ 9 る 常正 保 致	142

この章では、本器のセットアップと起動する方法について説明します。.

- 環境要件
- ハンドルについて

1.1 環境要件

次の環境条件が満たされている状態で本器をご使用 ください。

動作環境は、以下の要件を満たしていることを確認し てください:

温度: 0°℃~50°℃

校正の温度範囲 23℃±5℃(<1℃ 校正を実施する 時の温度偏差)

- 湿度: <70% @ ≦40℃ (結露なし)
- 高度: 0 ~ 2000m

1.2 ハンドルの取扱について

本器のハンドルを操作する。

図 1-1 ハンドルを取り外す方法

ハンドルを外す (ハンドルを①本体側方へ引き、②上方へ回転させるとハンドルが抜ける 位置になります。)

この章では、本器についての一般的な情報につてい書いてあります。

お選びいただけます。

- 製品概要
- 主な仕様
- 特長

2.1 製品概要

LCR-6000シリーズは、部品の入荷検査、品質管理、 設計などにご使用いただける汎用LCRメータです。 LCR-6000シリーズは、測定周波数別(10Hz~2kHz / 20kHz / 100kHz / 200kHz / 300kHz)に5モデルをラ インナップしています。テスト信号(0.01Vrms~2Vrms と100.0µA~20.00mA)とDCバイアス電圧機能によりイ ンダクタンス、キャパシタンス、抵抗などの部品、材料 および半導体デバイスなどの評価に適切なモデルを

また、コンパレータとBIN測定により最大10分類に部 品を選別するための比較出力/判定結果が可能で す。また、ハンドラインターフェースは、システムと組み 合わせることで部品の選別やコンポーネントテストを 自動化に対応できます。

リスト掃引測定機能は、最大10ポイントの周波数また はテスト信号(電圧または電流)で自動的に測定する ことで部品特性を簡易に解析ができます。

2.2 主な仕様と特長

2.2.1 測定項目

Cs-Rs, Cs-D, Cp-Rp, Cp-D, Lp-Rp, Lp-Q, Ls-Rs, Ls-Q, Rs-Q, Rp-Q, R-X, DCR, $|Z| - \theta r$, $|Z| - \theta d$, |Z|-D, |Z|-Q

2.2.2 等価回路(Equivalent Circuit)

直列(Serial)と並列(Parallel)

表 2-1 等価回路

回路		誘電正接 (Dissipation Factor)	変換Conversion
	Lp Rp	$D = 2\pi fLp/Rp = 1/Q$	Ls = Lp/(1+D ²) Rs = RpD ² /(1+D ²)
L	Lp Rp	D = Rs/2 π fLs = 1/Q	$L_p = (1+D^2)L_s$ $R_p = (1+D^2)R_s/D^2$
0	Cp F Rp	$D = 1/2 \pi fCpRp$ $= 1/Q$	$C_{s} = (1+D^{2})C_{p}$ $R_{s} = R_{p}D^{2}/(1+D^{2})$
0	Cs Rs	D = 2πfCsRs = 1/Q	$Cp = Cs/(1+D^2)$ $Rp = Rs(1+D^2)/D^2$

Q = Xs/Rs, D = Rs/Xs, Xs = $1/2 \pi$ fCs = 2π fLs

2.2.3 測定レンジについて

Auto、Hold、Nominalレンジ。全9レンジ。

Nominalレンジについて: nominal値に応じて自動的に 最良の範囲を選択します。 2.2.4 測定スピード

Fast: 40回/秒 =25ms/回 Medium: 10回/秒 =100ms/回 Slow: 3回/秒 =333ms/回 また、ノイズの影響などを除去するために平均回数を 1~256(分解能:1ステップ)の範囲内で指定できま す。

2.2.5 トリガモード

内部トリガ、手動トリガ、外部トリガとBUSトリガ

2.2.6 基本確度

0.05%@SLOW/MED

0.1%@FAST

2.2.7 表示範囲

表 2-2

測定I	いご
ᇧᆡᇨᄔ	///

パラメータ	表示範囲
L	0.00001µH∼99999.99H
С	0.00001pF~99999.99mF
R, X, Z	0.00001 Ω ~ 99.9999M Ω
G, B, Y	0.01nS~999.999S
D	0.00001~9.99999
Q	0.00001~99999.9
heta d	-179.999°~179.999°
θr	-3.14159A~3.14159
DCR	0.00001 Ω ~ 99.9999M Ω
Δ%	-999999%~999999%
	1

2.3 測定信号

2.3.1 測定信号周波数レンジと型式

LCR-6300:	10Hz~300kHz
LCR-6200:	10Hz~200kHz
LCR-6100:	10Hz~100kHz
LCR-6020:	10Hz~20kHz
LCR-6002:	10Hz~2kHz
周波数確度:	\pm 0.01%

2.3.2 測定信号レベル

10.00mV~2.00V (\pm 10%) CV \pm - \ddot{F} :10.00mV~2.00V(\pm 6%) 100.0 μ A~20.00mA (\pm 10%) CC \pm - \ddot{F} :100.0 μ A~20.00mA(\pm 6%) @2VMax

2.3.3 出力インピーダンス設定

 $30\,\Omega$, $50\,\Omega$, $100\,\Omega$

2.4 メイン機能

2.4.1 補正機能

OPEN/SHORT 補正:

テストフィクスチャの寄生インピーダンスや漂遊容量 に起因する測定誤差を排除します。 プリセットされた周波数またはスポット周波数で補正 を実施できます。

2.4.2 コンパレータ機能 (BIN ソート)

BIN ソート

プライマリーパラメータは、プライマリ測定パラメータ のそれぞれについてBIN1-BIN9、AUX IN、OUTとHI/ IN / LOに分類することができます。 シーケンシャルモードもしくはトレランスモードをソート モードとして選択することができます。

リミット設定

絶対値、偏差値、%偏差値を設定するために使用することができます。

BIN カウント

カウント数は、0から999999カウント。

2.4.3 リスト掃引測定

リストのポイント数

最大10ポイント

掃引パラメータ

テスト周波数、テスト電圧、テスト電流

リスト掃引測定のコンペア機能

コンパレータ機能を使用すると、各測定ポイントに対し て下限/上限を1ペア設定することができます。 最初の掃引パラメータで判定する場合: セカンドパラメータとともに判定または各リミットペアを 使用しないが選択できます。

2.5 その他の機能

2.5.1 ファイル操作

最大10個の設定条件を内部不揮発性メモリへ保存/ 呼出ができます。 また、外部USBディスクへの保存も可能です。

2.5.2 キーロック

前面パネルのキーをロックできます。

2.5.3 RS-232

コマンドは、SCPIに準拠しています。

2.6 画面イメージの保存

2.6.1 USB ホストポート

USB、Aタイプ、メス;USBフラッシュメモリのみ FAT32フォーマット

保存画面

本器のUSBホストポートにUSBフラッシュメモリが挿入 されUSBフラッシュメモリが使用可能であることを検出 すると、画面下部に「USB Disk Ready. Press <Enter> to save screen.」が表示されます。

図 2-1 Disk Ready表示

Disk Ready 表示

キーパッドで数値を入力する必要がない場合、Enter キーを押すことでスクリーンショット(表示画面)をキャ プチャしてUSBディスクに保存することができます。 スクリーンショットが正常に保存されると「Screen saved」と画面下部のメッセージエリアに表示されま す。同時に、スクリーンショットの場所と名前も表示さ れます。

例F:¥LCR-6300¥Screen¥ScreenShot001.bmp

図 2-2 画面の保存

2.6.2 DC バイアス電圧

範囲:0V ~ ±2.5V

確度:0.5%+0.005V

バイアス電圧	分解能
$0.01V \leq V \leq 2.50V$	0.01V
$-2.50V \leq V \leq -0.01V$	0.01V

2.6.3 アクセサリ

CD(ユーザーマニュアル)、電源コード、
テストフィクスチャ:LCR-06B
ハンドラインターフェース用コネクタ:D-sub 25ピン、
オス、コネクタ

2.6.4 オプション

LCR-05	垂直/水平リード部品用	
LCR-06B	ケルビンクリップテストリード	
LCR-07	2線ワニロクリップ	
LCR-08	SMD/チィップ部品用ピンセット型	
LCR-15	SMD/チィップ部品用(0201~1812)	
LCR-16	±45V DCバイアス電圧ボックス	
LCR-17	±2.5A DCバイアス電流ボックス	
	LCR-05 LCR-06B LCR-07 LCR-08 LCR-15 LCR-16 LCR-17	

注意:LCR-09とLCR-13は、使用できません。

この章では、前面パネル、背面パネルと画面表示の名称と機能を説明と操作のための基本的な手順を説明します。

- 前面パネルについて
- 背面パネルについて
- 電源のオン/オフ
- 被測定物(DUT)の接続

3.1 前面パネル

図 3-1 前面パネル

表 3-1

前面パネルの説明

No.	説明	No.	説明
1	液晶ディスプレイ	7	Setup+-
2	ソフトキー	8	4端子測定端子
3	数値キー	9	Trigger+—
4	矢印キー	10	ESC+-
5	電源スイッチ	11	USBホストポート:USBフラッシュメモリ用
6	Measure+-	12	System ソフトキー

3.2 背面パネル

図 3-2 背面パネル

表 3-2 背面パ

背面パネルの説明

No.	説明
1	電源コードソケット
2	フレーム端子
3	RS-232Cインターフェース(D-Sub 9ピン、オス)
4	ハンドラインターフェース(D-Sub 25ピン、メス)

3.3 電源のオン/オフ

3.3.1 電源を投入する

電源キーを2秒以上長押しします。 POWER LEDが点灯したら指を離します。

3.3.2 電源を切る

電源キーを2秒以上長押してください。電源キーを離 すと電源が切れます。

POWER LEDが消えたら指を離してください。

3.4 ウオームアップ時間

LCR-6000シリーズは、電源がオンになると直ちに動作 しますが、仕様を満たすためには電源投入後少なくと も30分間のウオームアップが必要です。

3.5 被測定物(DUT)を接続について

LCR-6000シリーズは、測定信号、ノイズおよび他のタ イプの接続に固有の他の要因からの干渉や相互イン ダクタンスを回避し、正確で安定した測定ができる自 動平衡ブリッジの4端子測定方式を採用しています。

図 3-3 Test FixtureおよびDUTを接続する

コンデンサなどの DUT を接続する場合、完全に放電 した後に測定端子(テストフィクスチャ、ケーブルなど) に接続してください。

この章では、以下について説明します。

- MEAS DISPLAY ページ
- OPEN/SHORT ページ
- LIST SETUP ページ
- LIST MEAS ページ

4.1 [MEAS DISPLAY]ページ

[Measure] キーを押すと[MEAS DISPLAY] ページが 表示されます。以下の項目が設定できます。

- FUNC 測定機能
- RANGE インピーダンスレンジ
- FREQ テスト周波数
- TRIG トリガモード
- LEVEL テスト信号レベル
- SPEED 測定スピード

図 4-1

[MEAS DISPLAY] ページ

22

4.1.1 測定パラメータ [FUNC]

LCR-6000シリーズは、1回の測定サイクルで複素インピーダンス(パラメータ)の4成分を同時に測定します。これらは、プライマリとセカンダリパラメータと2つのモニタパラメータです。

 モニタパラメータは、[SETUP]ページで設定できます。

 注意
 初期設定ではオフに設定されています。

測定パラメータの種類

表 4-1

測定パラメータの組み合わせ (プライマリーセカンダリ)

Cs-Rs	Cs-D	Cp-Rp	Cp-D
Lp-Rp	Lp-Q	Ls-Rs	Ls-Q
Rs–Q	Rp-Q	R-X	DCR
Z -θr	Z − <i>θ</i> d	Z -D	Z -Q

モニタパラメータ

表 4-2

モニタパラメータの種類

Z	D	Q	
Vac	Iac	Δ	∆%
θr	heta d	R	Х
G	В	Y	

表 4-3

測定とモニタパラメータについて

パラメータ	説明
Cs	直列等価回路のキャパシタンス[F]
Ср	並列等価回路のキャパシタンス[F]
Ls	直列等価回路のインダクタンス[H]
Lp	並列等価回路のインダクタンス[H]
Rs	直列等価回路モデルで測定された等
	価直接抵抗(ESR[Ω])
Rp	並列等価回路モデルで測定された等
	価並列抵抗(EPR[Ω])
Z	インピーダンス(絶対値)[Ω]
Y	アドミタンス(絶対値)[S]
G	コンダクタンス[S]
В	サセプタンス[S]

R	レジスタンス (=Rs)
Х	リアクタンス[Ω]
D	損失係数= $tan \delta$
Q	Qファクタ (=1/D)
heta r	位相角(Phase radian)
heta d	位相角(Phase angle)
Vac	テスト信号電圧
Iac	テスト信号電流
Δ	絶対偏差値
∆%	相対偏差値
DCR	直流抵抗[Ω]

測定機能を設定するための手順 [FUNC]

- Step 1. [Measure] キーを押します。
- Step 2. [MEAS DISPLAY] がアクティブでない場合、 [MEAS DISPLAY] ソフトキーを押します。
- Step 3. カーソルキーで[FUNC]を選択します。
- Step 4. ソフトキーで測定機能を選択します。

4.1.2 インピーダンスの範囲 [RANGE]

表 4-4

インピーダンスのレンジモード

モード	機能の概要	利点	欠点
Auto	DUTのインピ	レンジを選択	測定時間は、
レンジ	ーダンスに最	する必要があ	レンジ設定す
	適なインピー	りません。	る時間により
	ダンスレンジ		長くなります。
	を設定します		
Hold	インピーダン	レンジを設定	DUTの値に応
レンジ	スレンジを固	する時間が必	じて適切なレ
	定して測定し	要ない	ンジを選択す
	ます		る必要があり
			ます。
Nominal	nominal値に	レンジを選択	ソートモードで
レンジ	応じて、最適	する必要がな	のみ有効
	な範囲を設定	いため時間が	
	します	早い	

利用可能なインピーダンス範囲

HOLDレンジは、9個のインピーダンスレンジがありま す:10、30、100、300、1k、3k、10k、30k、100k.

インピーダンスレンジは、測定パラメータがキャパシタ ンスまたはインダクタンスであった場合でもDUTのイ ンピーダンスに応じて選択されます。

表 4-5 ホールド状態のときインピーダンスレンジための有効 測定レンジ。

レンジ	インピーダンス	有効測定レンジ
8	10	0 ~ 10Ω
7	30	10Ω ~ 100Ω
6	100	100Ω~ 316Ω
5	300	316Ω~ 1kΩ
4	1k	1kΩ~ 3.16kΩ
3	3k	3.16kΩ ~ 10kΩ
2	10k	10k Ω ~ 31.6k Ω
1	30k	31.6k $\Omega \sim 100$ k $\Omega (\infty)$
0	100k	100kΩ~∞(テスト周波数が
		20kHz未満のときのみ使用
		できます。)

表 4-6

ホールド状態のときインピーダンスレンジためのDCR FUNCの有効測定レンジ。

レンジ	インピーダンス	有効測定レンジ	オーバー
	レンジ		ロード
8	1	0Ω_3.1Ω	4.65 Ω
7	10	$2.8\Omega-99\Omega$	148.5 Ω
6	100	$90\Omega - 312\Omega$	468 Ω
5	300	$280\Omega-990\Omega$	1.485 k Ω
4	1k	$900\Omega-3.1k\Omega$	$4.65 \mathrm{k}\Omega$
3	3k	2.8 k $\Omega-$ 9.9k Ω	14.85k Ω
2	10k	9 k Ω $ 31$ k Ω	46.5k Ω
1	30k	28 k $\Omega-$ 99k Ω	148.5k Ω
0	100k	90k $\Omega \Omega - 312k$	100MΩ

インピーダンスレンジ設定の手順 [RANGE]

- Step 1. [Measure]キーを押します。
- Step 2. カーソルキーで[RANGE]を選択します。
- Step 3. ソフトキーでインピーダンスレンジモードまた はインピーダンスレンジを選択します。

ソフトキー	機能
AUTO RANGE	AUTOレンジに設定します
HOLD RANGE	HOLDレンジに設定します
NOMINAL RANGE	NOMINALレンジに設定し
	ます
INCR +	HOLDレンジでインピーダ
	ンスレンジを上げます。
DECR –	HOLDレンジでインピーダ
	ンスレンジを下げます。

4.1.3 テスト 周波数 [FREQ]

LCR-6300: 10Hz~300kHz LCR-6200: 10Hz~200kHz LCR-6100: 10Hz~100kHz LCR-6020: 10Hz~20kHz LCR-6002: 10Hz~2kHz

表 4-7周波数レンジとテスト周波数ポイント

周波数レンジ (f)	分解能
10.00 Hz \leq f \leq 99.99Hz	0.01Hz
$100.0Hz \leq f \leq 999.9Hz$	0.1Hz
1.000 kHz \leq f \leq 9.999kHz	1Hz
10.00 kHz \leq f \leq 99.99kHz	10Hz
100.0 kHz \leq f \leq 300.0kHz	100Hz

周波数確度: 0.01%、表示::4桁
テスト周波数の設定手順 [FREQ]

- Step 1. [Measure] キーを押します。
- Step 2. カーソルキーで[FREQ]を選択します。
- Step 3. ソフトキーまたは数値キーでテスト周波数を 入力します。

データを数字キーで入力したとき、ソフトキーで単位 (Hz、kHz)を変更します。

ソフトキー	機能
INCR +	事前定義された測定周波数を選択するた
DECR -	めに使用します。
	表 4-8, 表4-9, 表4-10, 表4-11, 表 4-12.を参照して下さい。

表 4-8 LCR-6300でINCR+/ DECR-を使用して選択すること ができるプリセットテスト周波数

INCR+/DECR-				
10Hz	50Hz	60Hz	100Hz	120Hz
1kHz	2kHz	10kHz	20kHz	40kHz
50kHz	100kHz	200kHz	250kHz	300kHz

表4-9 LCR-6200でINCR+/ DECR-を使用して選択すること ができるプリセットテスト周波数

NCR+/DECR-				
10Hz	50Hz	60Hz	100Hz	120Hz
1kHz	2kHz	10kHz	20kHz	40kHz
50kHz	100kHz	200kHz		

表4-10 LCR-6100でINCR+/ DECR-を使用して選択すること ができるプリセットテスト周波数

INCR+/DECR-				
10Hz	50Hz	60Hz	100Hz	120Hz
1kHz	2kHz	10kHz	20kHz	40kHz
50kHz	100kHz			

表4-11 LCR-6020でINCR+/ DECR-を使用して選択すること ができるプリセットテスト周波数

INCR+/DECR-					
10Hz	50Hz	60Hz	100Hz	120Hz	
1kHz	2kHz	10kHz	20kHz		

表 4-12 LCR-6002でINCR+/ DECR-を使用して選択すること ができるプリセットテスト周波数

INCR+/DECR-				
10Hz	50Hz	60Hz	100Hz	120Hz
1kHz	2kHz			

4.1.4 トリガモード [TRIG]

本器は、4つのトリガモードをサポートしています: INT(内部)、EXT(外部)、MAN(手動)とBUS(RS-

232C)

トリガ	内容
INT	測定サイクルを繰り返します。
MAN	[Trig]キーが押されるたびに測定を1サイ
	クル実行します。
EXT	背面パネルにあるハンドラインターフェー
	スの外部トリガ入力端子に立ち上がりパ
	ルスが入力されるたびに1サイクル測定を
	実行します。
BUS	RS-232C経由でトリガコマンドを受信する
	たびに1サイクルの測定を実行します。

トリガモードを選択するための手順 [TRIG]

- Step 1. [Measure] キーを押します。
- Step 2. カーソルキーを使用し[TRIG]フィールドを選択します。
- Step 3. ソフトキーでトリガモードを選択します。

ソフトキー	機能
INT	内部トリガモード
MAN	手動トリガモード
EXT	外部トリガモード
BUS	BUSトリガモード

4.1.5 テスト信号電圧/電流レベル [LEVEL]

本器のテスト信号電圧/電流レベルは、内部発振器からのテスト周波数の正弦波の実効値(RMS値)で設定します。定電圧または定電流レベルで測定が実行する場合、アスタリスク(*)がLEVEL表示の後ろに表示されます。

電圧範囲	分解能
$10.00 \text{mV} \leq \text{V} \leq 99.99 \text{mV}$	0.01mV
$100.0 \text{mV} \leq \text{V} \leq 999.9 \text{mV}$	0.1mV
$1.00V \leq V \leq 2.00V$	0.01V
電流範囲	分解能
$100.0\mu A \leq I \leq 999.9\mu A$	0.1µA
$1.00 \text{mA} \leq I \leq 20.00 \text{mA}$	0.01mA

テスト信号レベルの設定手順

- Step 1. [Measure] キーを押します。
- Step 2. カーソルキーで[LEVEL]フィールドを選択し ます。
- Step 3. ソフトキーまたは数値キーでテスト信号電圧 /電流レベルを入力します。

ソフトキー	機能
INCR +	主 4-19た 会 昭
DECR -	衣 4-13を多照
ALC ON	Auto Level ControlをONします。
ALC OFF	Auto Level Control をOFFします。

表 4-13

テスト電圧/電流レベル:INCR+/DECR-に設定可能な プリレベル。

INCR+/DECF	₹-(電圧)		
10.00mV	100.0mV	300.0mV	500.0mV
1.00V	1.50V	2.00V	
INCR+/DECF	?- (電流)		
100.0µA	500.0µA	1.00mA	5.00mA
10.00mA	20.00mA		

電圧レンジ	分解能
$10.00 { m mV} \leq { m LEVEL} \leq 99.99 { m mV}$	0.01mV
$100.0 { m mV} \leq { m LEVEL} \leq 999.9 { m mV}$	0.1mV
$1.00V \leq LEVEL \leq 2.00V$	0.01V

電流レンジ	分解能
100.0 uA \leq LEVEL \leq 999.9uA	0.1µA
$1.00 \text{mA} \leq \text{LEVEL} \leq 20.00 \text{mA}$	0.01mA

4.1.6 測定速度 [SPEED]

LCR-6000シリーズの測定速度は、SLOW/MED/ FASTから選択可能です。

SLOWモードでは、MED/ FASTより安定した正確な測 定結果となります。

測定スピードモードの設定手順

Step 1. [Measure] キーを押します。

Step 2. カーソルキーで[SPEED]を選択します。

Step 3. ソフトキーで測定スピードを設定します。

ソフトキー	機能
SLOW	40 回/秒
MED	10 回/秒
FAST	3 回/秒

注意

*1. 300kHz での測定スピードの代表値。 測定速度時間は、ハンドラ測定終了(EOM)出力 のトリガです。

表示: [BIN MEAS] Page

[RANGE]: HOLD RANGE

[AVG]: 1

[BIAS]: OFF

[AUTO LCZ]: OFF

[MON 1] [MON 2]: OFF

[DELAY]: 0 ms

[ALC]: OFF

測定スピード [ms]

	Speed			
テスト周波数(Hz)	SLOW MED FAS		FAST	
10	1600	1600	1600	
20	800	800	800	
100	483	160	160	
1k	342	94	30	
2k	336	91	26.5	
10k	332	88.5	24.5	
100k	332	88.5	24.5	
300k	332	88.5	24.5	
DCR	333	171	48	

4.1.7 測定ログ [LOG]

LCR-6000は、最大10,000個の測定値(CSV形式)を 外部USBディスクへ保存可能です。

最大10,000個の測定値を内部データバッファへ一時 保存し、バッファ内のデータをCSV形式で外付USBド ライブに保存できます。

LOG機能が有効なとき、画面は[MEAS DISPLAY]表示に固定されます。

[FUNC]、[FREQ]、[LEVEL]の設定も固定され変更で きません。

READY…中にSTOPを押した場合、画面下に

"Reached the limit of maximum file"と表示されデータ が保存できません。CLEAR&BUFFERを押し内部バッ ファをクリアしてください。

[MEAS	DISPLAY]	LOG	READY!	SAVE TO
Cs			F	USB
Rs			Ω	
Vac		V Iac	m A	
FUNC	Cs-Rs	RANGE	[0] AUTO	
FREQ	10.00 Hz	TRIG	INT	
LEVEL	1.00 V	SPEED	FAST	CLEAR
Reached	the limit of m	aximum file		BUFFER
	ENLARGE	SYSTE	M KEY LOCK)

ログ機能設定の手順

- Step 1. [Measure] キーを押します。
- Step 2. 左/右矢印キーでLOG情報を選択します。
- Step 3. [START LOG]ソフトキーで新規ログを開始 します。

ソフトキー	機能
START LOG	新規の測定ログを開始します。

Step 4. 新規ログが開始されると測定値は本器の内 部バッファに記録されます。 次表のオプションは、この記録プロセス中に 使用できます。

ソフトキー	機能
STOP	記録を停止し、一時的にバッファに ログを保存します。バッファ内に未 処理の記録データがあることがわか るように([LOG]情報内の)レコード カウントの後に感嘆符が追加されま す。
SAVE & STOP	記録を停止し、内部バッファに記録 データを外部USBフラッシュドライブ に保存します。保存操作の後、内部 バッファはクリアされます。 外部USBフラッシュドライブが接続さ れていない場合には、現在進行中 の記録を停止することはありませ ん。
CLEAR &	記録を停止し、内部バッファをクリア
STOP	します。

Step 5. 内部バッファが一杯になると、"!FULL"([LOG]ステータスフィールド内)が記録され たカウント数の後に表示されます。 この状態で、以下の2つの操作ができます。

ソフトキー	機能
SAVE TO USB	外部USBフラッシュドライブにバッフ ァ内の記録データを保存します。 この操作の後に内部バッファはクリ アされます。
CLEAR BUFFER	内部バッファをクリアします。

外部USBフラッシュドライブに内部バッファに記録され た測定値を保存する前に必ず前面パネルのUSBポートに外付けのUSBドライブを接続してください。 記録された測定値は、LCR-6000のモデルと同じ名前 の親ディレクトリのサブディレクトリ名MEAS DATAに 保存されます。

以下の例を参照してください:

例:F:¥LCR6300¥MEAS DATE¥MEAS0001.CSV

最大9999の記録ファイルをファイル名0001.csv~ 9999.csvで保存することができます。

内部バッファのサイズは、

SYSTEM→SYSTEM CONFIG→DATA BUFFER 設定 で調整できます。最大バッファサイズは、10000です。

4.2 [OPEN/SHORT] ページ

[Measure]キーを押し、[OPEN SHORT]ソフトキーを押 すと[OPEN SHORT]ページが表示されます。

このページは、浮遊アドミタンスおよび残留インピーダ ンスを補正するためのオープン/ショート/ スポット補 正を行うことができます。

OPENとSHORT機能は、固定トリミングポイントの範囲 にわたってオープンまたはショート補正を行います。 その他の全ての周波数の補正は、これらの固定トリミ ングポイントから補間されます。各LCR-6000モデルの トリミング周波数ポイントは、仕様の12.1をご参照くだ さい。

SPOT機能は、設定したスポット周波数でオープン、またはショート補正を実行します。

[OPEN SHORT]ページ内で、対応するフィールドに配置されたカーソルで以下の各コントロールを構成できます。

- オープン補正 [OPEN]
- ショート補正 [SHORT]
- スポット補正 [SPOT]
- 図 4-2 [OPEN/SHORT] ページ

4.2.1 オープン補正 [OPEN]

LCR-6000シリーズのOPEN補正機能は、測定端子か らテストフィクスチャやケーブル等の浮遊アドミタンス (G、B)に起因するエラーをキャンセルします。 (図4-3参照)。

図 4-3

浮遊アドミタンス

OPEN補正データは、全てのプリセット周波数ポイント で実行され、設定したテスト周波数に依存しません。 各モデルのトリミング周波数ポイントの一覧は、132 ページの表を参照してください。

オープン補正を実行する

Step 1.	[Measure]	キーを押します。
---------	-----------	----------

Step 2. [OPEN SHORT]ソフトキーを押します。

Step 3. カーソルキーで [OPEN]を選択します。

ソフトキー	機能
ON	オープン補正を有効にします。
OFF	オープン補正を無効にします。
MEAS OPEN	オープン補正を開始します。(AC).
DCR OPEN	オープン補正を開始します。(DC).

Step 4. [MEAS OPEN]または [DCR OPEN] ソフト キーを押します。

"Open-circuit the test terminals"ダイアロ グメッセージ"が表示されます。

Step 5. 前面パネルのBNC端子にテストフィクスチャ

を接続します。テストフィクスチャにDUTを接続しないでください。

- Step 6. [OK] ソフトキーを押します。 LCR-6000は、すべてのテスト周波数ポイン トでオープンアドミタンス(キャパシタンスお よびコンダクタンス)を測定します。 測定中、「LCR OPEN measurement in progress」ダイアログメッセージが表示され ます。 測定が終了すると、「Correction finished」が 表示されます。測定中に、[ABORT]ソフト キーを押すことで中止できます。
- Step 7. OPEN測定が終了後、自動的にOPEN補正 が有効になります。ただし、まだ手動でON かOFFのソフトキーを押すことにより、OPEN 補正の有効または無効を選択することがで きます。

4.2.2 ショート補正 [SHORT]

LCR-6000シリーズのショート補正機能は、ケーブルと DUTの接続ポイントのインピーダンスようなキャリブレ ーション外に存在する可能性のある残留インピーダン ス(R、X)を補正します。

図 4-4 残留インピーダンスを参照して下さい。

図 4-4

残留インピーダンス

ショート補正を実行する

- Step 1. [Measure] キーを押します。
- Step 2. [OPEN SHORT] ソフトキーを押します。
- Step 3. カーソルキーで[SHORT]を選択します。

ソフトキー	機能
ON	ショート補正を有効にする
OFF	ショート補正を無効にする
MEAS SHORT	ショート補正を開始する(AC).
DCR SHORT	ショート補正を開始する(DC).

- Step 4. Press the [MEAS SHORT]ソフトキーまたは [DCR SHORT]ソフトキーを押すと、 "Short-circuit the test terminals"ダイアロ グボックスが表示されます。
- Step 5. 前面パネルのBNC端子にテストフィクスチャ を接続します。テストフィクスチャの測定側 端子を短絡します。
- Step 6. [OK]ソフトキーを押します。LCR-6000は、全 てのテスト周波数ポイントで短絡インピーダ ンス(インダクタンスおよび抵抗)を測定しま す。 補正実行中は、ダイアログメッセージ

「LCR SHORT measurement in progress」が 画面イに表示されます。

補正が終了すると、「Correction finished」が 表示されます。補正実行中に、ショート補正 を中止する場合は、[ABORT]ソフトキーを押 します。

Step 7. SHORT補正が終了すると、SHORT補正は 自動的に有効になります。ただし、まだ手動 でONかOFFのソフトキーを押すことにより、 SHORT補正の有効または無効を選択する ことができます。

4.2.3 スポット補正

スポット補正機能は、ユーザーが指定した周波数で、 オープン/ショート補正を実行することができます。 1つの周波数ポイントを指定します。

周波数ポイントを指定してオープン補正を実行する

- Step 1. [Measure] キーを押します。
- Step 3. [OPEN SHORT] ソフトキーを押します。
- Step 3. カーソルキーを使用し[SPOT]を選択します。
- Step 4. 数値キーを使用して周波数を入力します。

ソフトキー	機能
ON	このポイントを有効にします。
OFF	このポイントを無効にします。
CURRENT FREQ	現在の周波数を使用します。
MEAS OPEN	オープン補正を開始します。
MEAS SHORT	ショート補正を開始います。

- Step 4. [MEAS OPEN] ソフトキーを押します。 "Open-circuit the test terminals"ダイアロ グメッセージが表示されます。
- Step 5. 前面パネルのBNC端子にテストフィクスチャ へ接続します。テストフィクスチャにはDUTを 接続しないで下さい。
- Step 6. [OK]ソフトキーを押します。この周波数ポイ ントでオープンアドミタンス(静電容量及びコ ンダクタンス)を補正します。

補正実行中、「OPEN measurement in progress」ダイアログが画面に表示されます。

補正が完了すると「Correction finished」が 表示されます。

補正実行中に、オープン補正を中止する場合は[ABORT] ソフトキーを押します。

周波数ポイントを指定し、ショート補正を行います。

- Step 1. [MEAS SHORT]ソフトキーを押します。 ダイアログメッセージ「Short-circuit the test terminals」が表示されます。
- Step 2. 前面パネルのBNC端子と短絡テスト端子に テストフィクスチャを接続します。
- Step 3. [OK] ソフトキーを押します。この周波数ポイントでショートインピーダンス(インダクタンスおよび抵抗)を補正します。 補正実行中は、画面に「SHORTmeasurement in progress」 ダイアログメッセージが表示されます。 補正が完了すると画面に「Correction finished」が表示されます。補正実行中に、ショート補正を中止する場合は[ABORT] ソフトキーを押します。

4.3 [LIST SETUP] ページ

[Measure] キーを押し[LIST SETUP]ソフトキーを押し、[LIST SETUP]ページを表示します。

リスト掃引測定機能は、周波数や信号レベルで最大 10個のリストポイントを掃引する自動掃引測定ができ ます。

リスト掃引測定機能を使用する前に、リストを設定す る必要があります。

[LIST SETUP]ページで、対応するフィールド内で カーソル位置の各測定コントロールを設定することが できます。

- ファンクションモード[FUNC]
- テストモード[MODE]
- パラメータ選択[FREQ[Hz], VOLT[V], CURR[A]]
- リミットパラメータ選択 [LMT]
- 下限/上限リミット [LOWER] [UPPER]

図 4-5	
-------	--

[LIST SETUP] ページ

[L]	IST SETUP]	FUNC	С	s-Rs		MEAS
			MODE	S	ΈQ		DISPLAY
No.	FREQ[Hz]	LMT	LOWER		UPPER		
1	1.000 k	A	50.0000	μF	80.0000	μF	MEAS
2	2.000 k	A	50.0000	μF	80.0000	ιµΕ	SETUP
3	3.000 k	A	50.0000	μF	80.0000	ιµΕ	
4	5.000 k	A	1000.000	∂mF	1000.00	10mF	LIST
5	10.00 k	A	1000.000	∂mF	1000.00	10mF	MEAS
6	50.00 k	A	1000.000	∂mF	1000.00	10mF	
7	150.0 k	A	1000.000	∂mF	1000.00	10mF	
8	200.0 k	A	1000.000	∂mF	1000.00	10mF	
9	250.0 k	В	800.000	Ω	900.000	Ω	
10	300.0 k	В	0.01000	Ω	1.00000	Ω	
		FILE	SYST	EM	KEY L	.0CK	

4.3.1 測定機能 [FUNC]

プライマリおよびセカンダリ測定を選択します。

4.3.2 テストモード [MODE]

[LIST MEAS] ページには、最大10個の周波数掃引または振幅リストを実行します。

[MODE]がSEQに設定され、[TRIG] がMANに設定さ れている場合、[LIST MEAS]機能は、自動的に最後 のステップまで、リスト上の各テストステップを順番に 実行します。その後、トリガボタンを待ちとなり、プロ セスを繰り返すにはトリガボタンを押します。

[MODE]がSTEPに設定され、[TRIG]がMANに設定されている場合、[LIST MEAS]機能は、自動的に最初のテストステップを実行します。その後、トリガボタンが押されるまで次の手順を実行するのを待ちます。 この手順は、リスト上の各ステップに対して繰り返されます。

ソフトキー	機能
SEQ	シーケンスは、1つのトリガで全て の測定を実行します。
STEP	1つのトリガで1ステップずつ実行し ます。

[LIST MEAS] ページには、4つの利用可能なトリガモ ードがあります。

トリガモード	機能
INT	内部トリガで動作します。
MAN	パネルのトリガボタンを押すとトリ
	ガが掛かります。
EXT	ハンドラインターフェースのトリガピ
	ンに信号を入力することでトリガ動
	作します。
BUS	RS-232Cポートからのトリガコマン
	ドで動作します。

4.3.3 リスト掃引測定のパラメータ

リスト掃引測定に使用するパラメータは、測定周波数 や信号レベル[電圧/電流]が設定できます。 リスト掃引測定パラメータを指定するには、リストのポ イントフィールドを使用します。

リスト掃引測定パラメータを指定する

- Step 1. [Measure] キーを押します。
- Step 2. [LIST SETUP] ソフトキーを押します。
- Step 3. カーソルキーを押しFREQまたはVOLTまた はCURRフィールドを選択します。
- Step 4. ソフトキーでリスト測定のパラメータを選択 します。

ソフトキー	機能
FREQ	リスト掃引測定パラメータとして周
	波数を使用します
VOLT	リスト掃引測定パラメータとして電
	圧を使用します。
CURR	リスト掃引測定パラメータとして電
	流を使用します。

4.3.4 リストポイントとリミットモード

リスト掃引測定機能では、10ポイントのリストに測定リ ミット値を追加できます。

各リストポイントのリミットはオン/オフができます。

リストポイントを設定するには:

- Step 1. [Measure]キーを押します。
- Step 2. [LIST SETUP] ソフトキーを押します。
- Step 3. カーソルキーでリストのポイント(1から10) を一つ選択します。
- Step 4. ソフトキーを使用し現在選択しているポイン トのオン/オフを切り替えます。

ソフトキー	機能
ON	現在のポイントをオンにします。
OFF	現在のポイントをオフにします。

- Step 5. ポイントの値(周波数値や信号レベル(電圧 /電流)値)を入力します。 周波数値を入力すると、ソフトキーのラベル が単位ラベル(Hz、kHz)に代わります。 信号レベルを電圧値で入力すると、単位を 入力する必要はありません。 信号レベルを電流値で入力すると、ソフト キーのラベルが単位ラベル(µA、mA)に変 わります。
- Step 6. カーソルキーを使用しLMTフィールドを選択 します。
- Step 7. 該当するソフトキーを押して、リミットのパラ メータを設定します。

ソフトキー	機能
PRIMARY A	limitパラメータとしてプライマリ
	パラメータを使用します。
2NDARY B	limitパラメータとしてセカンダリ
	パラメータを使用します。
OFF	リミット機能をオフにします。

- Step 8. カーソルキーを使用してLOWER フィールド を選択します。
- Step 9. 下限リミット値を入力します。
- Step 10. カーソルキーを使用しUPPERフィールドを 選択し上限リミット値を入力します。
- Step 11. Step 4からStep 10を繰り返します。

4.4 [LIST MEAS] ページ

[Measure]キーを押し、[LIST MEAS]ソフトキーを押す と[LIST MEAS]ページが表示されます。

図 4-6 [LIST MEAS] ページ

[L] TRIO	IST MEA G MAN	AS] MODE	SEQ	LO Rai	G NGE	0FF [8] A	ОТО		1 1	1EAS DISPLAY
No.	FREQ[Hz]	Cs			Rs		CMP	ι_	
1	1.000	k	151.	044	пF	4.3813	7Ω			1EAS
2	2.000	k	150.	767	nF	3.0041	6Ω		19	SETUP
3	3.000	k	150.	584	nF	2.4387	1Ω			
4	5.000	k	150.	343	nF	1.8987	6 Ω			IST
5	10.00	k	149.	885	nF	1.4236	2 Ω		5	SETUP
6	50.00	k	148.	033	nF	0.8398	8 Ω			
7	150.0	k	143.	530	пF	0.7085	8 Ω			
8	200.0	k	140.	600	nF	0.6908	6Ω		L	
9	250.0	k	137.	163	nF	0.6757	4 Ω		F	
- 10	300.0	k	133.	081	nF	0.6653	2 Ω	P		
									L	
		FII	Ε)	9	SYST	EM K	EY L	0CK		

[LIST MEAS] ページは、リストポイントを掃引し測定 結果がリミット値と比較されます。掃引中は、アスタリ スクマーク(*)が現在測定されているリストポイントの 左側に表示されます。

このページでは、以下について説明します:

- トリガモード [TRIG].
- テストモード [MODE].
- レンジモード [RANGE].
- 測定ログ [LOG].

これらの状態は、[MEAS DISPLAY]ページと[SETUP] ページで設定されます。

4.4.1 トリガモード [TRIG]

ここでLIST MEASのトリガモードが選択できます。手動トリガは、通常LIST MEASで使用されます。

LIST MEAS機能に入ると、トリガの初期設定は手動ト リガモードです。

変更する場合には、カーソルキーでTRIGソースフィー ルドをハイライトにしその他の有効なトリガソースを選 択します。

トリガモード

-	
トリガモード	機能
INT	内部トリガ。リストの全10ポイントを
	連続して掃引測定します。
MAN	手動トリガ。[Trig] キーが押される
	毎にトリガが掛かりリストポイントを
	トリガ毎に実行します。
EXT	外部トリガ。背面パネルにあるハ
	ンドラインターフェースのトリガピン
	に信号が入力される毎にリストポ
	イントを実行します。
BUS	BUSトリガ。SCPIコマンドを受信す
	る毎にリストポイントを実行しま
	す。

4.4.2 テストモード [MODE]

[LIST MEAS] ページでは、最大10ポイントの周波数 周波数または振幅掃引テストを実行します。

[MODE]がSEQに設定され、[TRIG] がMANに設定されている場合、[LIST MEAS]機能は、最終ステップまで順番にリスト上の各ステップを実行します。その後、再度トリガボタンが押されるまで測定を停止します。

[MODE]をSTEPに設定され、[TRIG]がMANに設定されている場合、[LIST MEAS]機能は、自動的に最初のテストステップを実行します。その後、次のステップを実行するためにトリガボタンを待ちます。

このプロセスは、リスト上の各ステップに対して繰り返されます。

テストモード

ソフトキー	機能
SEQ	シーケンス測定は、1つのトリガで全
	てのステップを実行します。
STEP	トリガ毎に各ステップを順番に実行
	します。

[LIST MEAS] ページには、4つの利用可能なトリガ モードがあります。

トリガモード	機能
INT	内部トリガで動作します。
MAN	パネルのトリガボタンを押すとトリガ
	が掛かります。
EXT	ハンドラインターフェースのトリガピ
	ンに信号を入力することでトリガ動
	作します。
BUS	RS-232Cポートからのトリガコマンド
	で動作します。

4.4.3 レンジモード [RANGE]

各測定ステップの選択した測定範囲を表示します。 このフィールドは表示のみで、ここで変更することは できません。測定レンジを変更する場合には、[MEAS DISPLAY]または[MEAS SETUP]で変更します。

4.4.4 測定ログ [LOG]

本器は、最大10,000個の測定値を記録できる内部 データバッファを持っています。これらの測定値 は、.CSV形式ファイルで外部USBドライブに保存する ことができます。

LOG機能が有効なとき、画面は[MEAS DISPLAY]画 面に固定されています。[FUNC]、[FREQ]と[LEVEL] の設定も固定され変更することはできません。

ログを設定するための手順

- Step 1. [LIST MEAS] ソフトキーを押します。
- Step 2. カーソルキーで[LOG]情報フィールドを選択 します。
- Step 3. [START LOG]ソフトキーで新規のログを開始します。

ソフトキー	機能
START LOG	新規ログを開始します。

Step 4. 新規ログを開始すると、測定値が内部バッ ファに記録されます。次の表のオプションが 、記録実行中に使用できます。

ソフトキー	機能
SAVE & STOP	記録を停止し、内部バッファに保存 された記録データを外部USBに保 存します。内部バッファは保存操作 が完了するとクリアされます。 外部USBフラッシュドライブが接続さ れていない場合、現在実行中の記 録を停止することはありません。
CLEAR & STOP	記録を停止し内部バッファをクリアし ます。

Step 5. 内部バッファが一杯になると記録カウント数 表示([LOG]ステータスフィールド)の後ろに "!FULL"が追加されます。このような場合、 以下の2つの操作が可能です。

ソフトキー	機能
SAVE TO USB	バッファ内の記録データを外部USB フラッシュドライブに保存します。こ の操作を完了すると内部バッファは クリアされます。
CLEAR BUFFER	内部バッファをクリアします。

内部バッファに記録された測定値を、外部USBフラッシュドライブに保存する前に、フロントパネルのUSB ポートに外部USBドライブを接続することを忘れない でください。

記録された測定値は、使用している型式と同じ名前の親ディレクトリのサブディレクトリ名LIST DATAに保存されます。以下の例を参照してください:

例:F:\LCR6300\LIST DATE\LIST0000.CSV

ファイル名0001.csv~99999.csvで最大9,999個まで、保存することができます。

内部バッファのサイズは、SYSTEM→SYSTEM CONFIG→DATA BUFFER設定フィールドで調整でき ます。最大データバッファサイズは、10,000です。

4.5 [ENLARGE DISPLAY] ページ

この拡大表示モードでは、4つの測定値のみを見やす い文字サイズで表示します: プライマリ測定パラメータ、セカンダリ測定パラメータ とム、ム%、IacまたはVacなどの 2つのモニタパラメ ータを表示します。

4.5.1 拡大表示

[MEAS DISPLAY]のENLARGEソフトキーを押して [ENLARGE DISPLAY] モード(拡大表示モード)に入り ます。逆に、[ENLARGE DISPLAY]のNORMALソフト キーを押すと[ENLARGE DISPLAY]を終了し通常の [MEAS DISPLAY]モードに戻ります。

[ENLARGE DISPLAY]モードは、画面上部に2つのプ ライマリ測定値とセカンダリ測定値が大きく表示され 画面下部にディスプレイの下部に選択した2つのモニ タが小さくい測定値表示されます。現在測定中のDUT に対するダイレクト比較機能(0

ダイレクト比較機能を参照ください)のPASS/FAIL結 果は、画面右下に表示されます。

ダイレクト比較機能を使用すると、BINソート機能の複 雑な操作なしに現在測定しているDUTが許容範囲内 であるかどうかを確認することができます。

図 4-7 [ENLARGE DISPLAY] ページ

4.5.2 ダイレクト比較機能

ダイレクト比較機能は、[BIN SETUP]ページの設定で オンにできます。 [BIN SETUP]ページでBIN数が、1に設定されていると きに、ダイレクト比較機能が[ENLARGE DISPLAY] モードで有効になります。ダイレクト比較を有効にする には、[BIN SETUP] ページで"1-BINS"を選択しま す。"1-BINS"を選択する方法についてはBINの合計

数「1BIN」を選択する方法については65ページのBIN の総数 [#-BINS]の章を参照してください。

図 4-8

ダイレクト比較の設定

[BIN	SETUP]		FUNC Cs-	Rs
COMP	on nom	151.000 nF	BEEP OFF	1-BINS
MODE	PER AUX	0N		<u> </u>
1-BIN	S LOWER	UPPER	2	0.0710
1	-10.0000	% 10.0	9000 %	2-BINS
2	2.00000	% 2.00	9000 %	
3	3.00000	% 3.00	9000 %	
4	5.00000	% 5.00)000 %	3-BINS
5	10.0000	% 10.0)000 %	
6	20.0000	% 20.0)000 %	
- 7	0.00000	% 0.00	9000 %	4-BINS
8	0.00000	% 0.00	9000 %	
9	0.00000	% 0.00	9000 %	MORE
2nd	3.00000	Ω 5.00	Ω 000	1/3
	FILE	SYSTEM	KEY L	LOCK

この章には、以下の情報が含まれています。

- MEAS SETUP ページ
- BIN SETUP ページ
- BIN MEAS ページ
- BIN COUNT ページ

[Setup]キーを押すと[MEAS SETUP]ページが開きます。

5.1 [MEAS SETUP] ページ

「MEAS SETUP]ページでは、測定結果やソート結 果は表示されませんが測定は実行中のままです。

図 5-1 「MEAS SETUP] ページ

[MEAS S	ETUP]			0- D-
FUNC	Cs-Rs	RANGE	[4] AUTO	US-KS
FREQ	1.000 kHz	TRIG	INT	
LEVEL	1.00 V*	SPEED	MED	Co-D
SRC RES	100Ω	AVG	1	05-0
BIAS	OFF	Mon 1	Δ	
AUTO LCZ	OFF	MON 2	Δ %	Co-Ro
DELAY	0 ms	NOMINAL	151.000 nF	
ALC	٥N			
				Cp-D
				· ·
				морг
				1/4
				174
	FILE	SYSTEM	KEY LOCK	

[MEAS SETUP] ページでは、対応するフィールドにあ るカーソルで、以下の測定の各コントロールを設定す ることができます。

- 測定機能 [FUNC] *1
- インピーダンスレンジ [RANGE] *1
- テスト周波数 [FREQ] *1
- トリガモード [TRIG] *1
- テスト信号電圧レベル[LEVEL] *1
- 測定スピード [SPEED] *1
- ソース出力インピーダンス [SRC RES]
- 平均回数 [AVG]
- DCバイアス電圧 [BIAS]
- オートLCZ 機能 [AUTO LCZ]
- モニタ 1とモニタ 2 パラメータ選択 [MON 1] [MON 2]
- 測定遅延時間 [DELAY]
- Auto Level Control [ALC]

*1. これらは、[MEAS DISPLAY]ページと
[BIN COUNT] ページで設定できます。22 ページの
4.1 [MEAS DISPLAY]ページを参照してください。

5.1.1 ソース出力インピーダンス [SRC RES]

ソース出力インピーダンスは、 30Ω 、 50Ω または100 Ωに設定できます。

小さなインダクタを測定する場合には30Ωを選択して ください。

ソース出力インピーダンスを設定するための手順

- Step 1. [Setup] キーを押します。
- Step 2. カーソルキーで[SRC RES]フィールドを選択します。
- Step 3. ソフトキーを使用して測定スピードを設定します。

ソフトキー	機能
30	30 Ω
50	50 Ω
100	100 Ω

5.1.2 平均回数 [AVG]

平均機能を使用すると、連続した測定結果の移動平 均値が得られます。

平均回数は、1から256の整数で指定できます。

平均回数を設定します。

- Step 1. [Setup] キーを押します。
- Step 2. カーソルキーを使用し[AVG]フィールドを選択します。
- Step 3. ソフトキーまたは数値キーで平均回数を入 力します。

ソフトキー	分解能
INCR +	平均数が1、2、4、8、16、32、64、
	128と256で増加します。
DECR -	平均数が1、2、4、8、16、32、64、
	128と256で減少します。

5.1.3 DC バイアス電圧 [BIAS]

この機能は、DUTのAC測定を実行している間、DUT へのDCバイアス電圧を印加します。

設定可能なDCバイアス電圧の範囲は-2.5V~2.5Vです。

電解コンデンサなどの極性コンデンサでDCバイアス 電圧を印加して測定する必要がある場合に使用しま す。

DC バイアス電圧設定の手順

- Step 1. [Setup] キーを押します。
- Step 2. カーソルキーで[BIAS] フィールドを選択しま す。

Step 3. ソフトキーでDCバイアス電圧を選択します。

ソフトキー	機能
OFF	DCバイアス電圧をオフにします。
2V	DUTにDC 2Vの電圧を供給します。
1.5V	DUTにDC 1.5Vの電圧を供給します。
-1.5V	DUTにDC -1.5Vの電圧を供給します。
-2V	DUTにDC -2Vの電圧を供給します。

DCバイアス電圧範囲	分解能
$0.01V \leq DC BIAS \leq 2.50V$	0.01V
$-2.50V \le DC BIAS \le -0.01V$	0.01V

5.1.4 オート LCZ 機能 [AUTO LCZ]

オートLCZ機能は、適切な測定パラメータを選択する 補助します。

オート LCZ 機能を設定するには

- Step 1. [Setup] キーを押します。
- Step 2. カーソルキーを使用し[AUTO LCZ]フィール ドを選択します。
- Step 3. ソフトキーでオートLCZ機能のオン/オフを切り替えます。

ソフトキー	機能
OFF	オートLCZ機能をオフにします。
ON	オートLCZ機能をオンにします。
	オートLCZ機能をオンに設定すると
	[FUNC] フィールドに「AUTO-LCZ」と表
	示されます。

測定機能を設定した後、オート LCZ 機能はオフになります。

5.1.5 モニタ 1 とモニタ 2 [MON 1][MON 2]

本器は、メインの測定表示の他にパラメータを2つ モニタできます。

モニタパラメータを追加しても測定時間は増加しま せん。モニタパラメータは、[MEAS DISPLAY] ページと[ENLARGE]ページで表示します。

モニタパラメータを設定するための手順 (モニタ1とモニタ2)

- Step 1. [Setup]キーを押します。
- Step 2. カーソルキーで[MON 1] または [MON 2] フィールドを選択します。

	Step 3.	ソフトキー	・でDCバ	イアス電圧を選択します。
--	---------	-------	-------	--------------

•	
ソフトキー	機能
OFF	モニタをオフします。
z	インピーダンスの絶対値
D	損失係数= $tan \delta$
Q	Qファクタ (=1/D)
Vac	テスト信号電圧

Iac	テスト信号電流
Δ	絶対偏差値Absolute deviation value
Δ%	相対偏差値Relative deviation value
θr	位相角(radian)
heta d	位相角(deg)
R	抵抗 (=Rs)
Х	リアクタンス
G	コンダクタンス
В	サセプタンス
Y	アドミタンスの絶対値

5.1.6 測定遅延 [DELAY]

この設定は、トリガ信号を受信した後、測定を開始す るまでの待機時間を決定します。 設定範囲:0sから60ms

5.1.7 オートレベルコントロール [ALC]

オートレベルコントロール(ALC)機能は、テスト電圧/ 電流レベル設定がDUTにかかる電圧または流れる電 流が一致するように調整します。 この機能を使用すると、DUTに印加する信号レベルを

一定(定電圧または定電流)にすることができます。

実際の測定VacまたはIacがALCの制御できる範囲を 超えたとき警告メッセージ「Failed! ALC can't regulate!」が画面下に表示され,ALCがもはやVac/Iac を制御できない表示します。

ALCがオンになっているとき、アスタリスクがLEVEL V またはAの横に表示されます。

ソフトキー	機能
OFF	オートレベルコントロール機能をオ
	フにします。
ON	オートレベルコントロール機能をオ
	ンにします。

5.1.8 Nominal 値[NOMINAL]

MON1とMON2がΔまたはΔ%のいずれかのモードに 設定されている場合にのみノミナル値のパラメータが 表示され設定可能になります。

ノミナル値と測定されたメインパラメータは、△または △%の計算を実行するために使用されます。

5.2 [BIN SETUP] ページ

[Setup]キーを押し[BIN SETUP] ソフトキーを押すと [BIN SETUP]が開きます。

このページは、内蔵コンパレータを構成することがで きます。内蔵コンパレータはセカンダリパラメータリミッ トの1セットとともにプライマリパラメータリミットの9セッ トまで使用して最大10レベル(BIN1からBIN9とOUT)に DUT測定値を分類することができます。

また、プライマリーパラメータの制限内に収まるが、セ カンダリパラメータのリミットを外れたDUTは、補助BIN に分類することができます。

コンパレータを最大限に活用できるように本器はコン パレータと同時に使用するためのハンドラインタフェー スを装備しています。全10BIN信号をハンドラインター フェースから出力することができます。

[BIN SETUP] ページでは、対応するフィールドに配置 されたカーソルで、次の各コントロールを設定すること ができます。

- 測定機能 [FUNC]
- コンパレータのON/OFF [COMP] *1
- 補助BINのON/OFF [AUX] *1
- Nominal值 [NOM]
- プライマリパラメータコンパレータ制限モード [MODE]
- ブザー機能 [BEEP]
- プライマリパラメータトータルBIN [BINS]

义	5-2	[BIN SETUP] ペー	ジ
	5 2		/

[BIN S COMP ON	etup] I Nom	137 0N	FUNC 000 _P F BEEP	Cs-Rs OFF	MEAS DISPLAY
6-BINS	LOWER	UH	UPPER	(MEAS
1	110.000	nF	120.000 n	F	SETUP
2	120.000	nF	130.000 nl	E)	
3	130.000		140.000 ni 150.000 -1		BIN
4 5	140.000	nr nF	160.000 ni 160.000 n		MEAS
6	160.000	nF	170.000 n	F í	DIN
7	0.00000	рF	0.00000 pl	F	COUNT
8	0.00000	рF	0.00000 pl	F	
9	0.00000	рF	0.00000 pl	F (
2nd	0.01000	Ω	0.90000	Ŭ	
	FILE		SYSTEM	EY LOCK	

5.2.1 測定機能 [FUNC]

本器は、1回の測定サイクルで複素インピーダンス(パ ラメータ)の4つの成分を同時に測定します。これらは プライマリーパラメータ、セカンダリパラメータと2つの モニタパラメータを含みます。詳細については、22 ページの4.1 [MEAS DISPLAY]ページの章を参照して ください。

5.2.2 コンパレータ機能 ON/OFF

コンパレータは、最大9セットのプライマリーパラメータ のリミット値とセカンダリパラメータのリミット値の1セッ ト使用して、最大10個のBIN(BIN1からBIN9とOUT1) を並べ替えることができます。

DUTが、プライマリーパラメータが制限内で、セカンダ リパラメータ設定がない場合に、補助BIN(AUX)に分 類することができます。

コンパレータ機能を設定するための手順 [COMP]

- Step 1. [Setup] キーを押します。
- Step 2. [BIN SETUP]ソフトキーを押します。
- Step 3. カーソルキーで[COMP] フィールドを選択し ます。
- Step 4. ソフトキーでコンパレータのオン/オフを切り 替えます。

ソフトキー	機能
OFF	COMP機能をOFFします。
ON	COMP機能をONします。

5.2.3 補助 Bin [AUX]

AUXをオンにした後にプライマリパラメータリミット値 以内に入らないDUTは、OUTとして分類されます。 また、プライマリパラメータのリミット内に収まるが セカンダリパラメータリミット内に入らないDUTは、補 助(AUX)BINに分類されます。

補助BIN [AUX]をオン/オフする手順

- Step 1. [Setup] キーを押します。
- Step 2. [BIN SETUP]ソフトキーを押します。
- Step 3. カーソルキーで[AUX]を選択します。
- Step 4. ソフトキーで補助BINのオン/オフを切り替え ます。

ソフトキー	機能
ON	補助BINをONします。
OFF	補助BINをOFFします。

5.2.4 プライマリパラメータのコンパレータリミット モード[MODE]

以下の3つのいずれかの方法で、プライマリパラメー タのリミット値を指定することができます。

- 許容範囲(Tolerance)モード [%][Δ]
 許容範囲モードでは、コンパレータのリミット値は [NOM]フィールドで指定されたノミナル(公称)値 からの偏差に基づいています。
 許容範囲モードのリミット値は、偏差率(%)また は絶対値(Δ値)パラメータで設定します。
- シーケンシャルモード [SEQ]
 シーケンシャルモードでは、比較リミット値は、測定の絶対値に基づいています。これらのリミット値を設定するとき、最初に最小値を設定し次に最大値を設定する必要があります。
- ノミナル(Nominal)値[NOM]ノミナル(リファレンス値)をABSとPERコンペアモードに対して設定し

ます。数値キーで値と単位を入力します。

絶対値モード[ABS]

絶対値 (Δ) = UNKNOWN 値 – ノミナル値

図 5-4 絶対値(Absolute)モード

ポイントを含みます

ポイントを除きます

パーセンテージモード [PER] パーセンテージ偏差(%) = 絶対値(Δ)/ノミナル値× 100%

パーセンテージモード

ポイントを含みます

ポイントを除きます
シーケンシャルモード[SEQ]

図 5-6

シーケンシャルモード

- ポイントを含みます。
- ポイントを除きます。

シーケンシャルモードでは、比較リミット値は測定の絶対値に基づいています。

ノミナル値は、この操作が必要ありません。

コンパレータのリミットモードを設定する

- Step 1. [Setup] キーを押します。
- Step 2. [BIN SETUP] ソフトキーを押します。
- Step 3. カーソルキーで[MODE]フィールドを選択します。
- Step 4. ソフトキーでコンパレータモードを選択しま す。

ソフトキー	機能
ABS	絶対パラメータ値
PER	偏差パーセント
SEQ	シーケンシャルモード

5.2.5 許容値モードのノミナル値

プライマリパラメータのリミットモードとして許容値モー ドを使用するときは、ノミナル値を設定する必要があり ます。

ノミナル値を入力する

- Step 1. [Setup] キーを押します。
- Step 2. [BIN SETUP] ソフトキーを押します。
- Step 3. カーソルキーで[NOM] フィールドを選択しま す。
- Step 4. Enterキーでノミナル値を入力します。 ソフトキーで単位を選択します。

5.2.6 ブザー機能

ブザーモードが有効のときブザー機能は設定に応じ て異なる動作をします。

- ブザー機能を設定する
- Step 1. [Setup] キーを押します。
- Step 2. [BIN SETUP] ソフトキーを押します。
- Step 3. カーソルキーで[BEEP]フィールドを選択します。
- Step 4. ソフトキーでブザー機能を設定します。

ソフトキー	機能
OFF	ブザー機能をオフします。
PASS	コンパレータのソート結果がOKのとき
	ブザー音がします。
FAIL	コンパレータのソート結果がNGのとき
	ブザー音がします。

5.2.7 BIN の総数 [#-BINS]

本器には、9個のBINがあります。 (1-BINSから9-BINS)

BIN の総数を選択します。

- Step 1. [Setup] キーを押します。
- Step 2. [BIN SETUP] ソフトキーを押します。
- Step 3. カーソルキーで[#-BINS]フィールドを選択し ます。

Step 4. ソフトキーでブザー音を選択します。

ソフトキー	機能
1-BINS	1BINに設定します。
2-BINS	2 BINに設定します。
3-BINS	3 BINに設定します。
4-BINS	4 BINに設定します。
5-BINS	5 BINに設定します。
6-BINS	6 BINに設定します。
7-BINS	7 BINに設定します。
8-BINS	8 BINに設定します。
9-BINS	9 BINに設定します。

5.2.8 上限と下限リミット

本器のコンパレータは、セカンダリパラメータリミット値 の1セットとプライマリパラメータリミットを9組まで使用 して、最大10レベル(BIN1 からBIN9とOUT)にDUTを 並べ替えることができます。

許容差ノードのリミット値を入力する

- Step 1. [Setup] キーを押します。
- Step 2. [BIN SETUP]ソフトキーを押します。
- Step 3. カーソルキーで[BIN 1 LOWER]フィールドを 選択します。
- Step 4. Enterキーでリミット値を入力します。 ABSおよびSEQモードでは、ソフトキーを使 用して単位を入力してください。 PERモードでは、単位は%です。
- Step 5. 全てのリミット値を入力するまでカーソル キーを使用しStep4を繰り返します。
- Step 6. カーソルキーを使用し[2nd LOWER]フィール ドを選択し、セカンダリパラメータの下限値を 入力します。
- Step 7. [2nd UPPER] フィールドを選択し上限リミット 値を入力します。

5.3 [BIN MEAS] ページ

[Setup] キーと[BIN MEAS]ソフトキーを押すと、[BIN MEAS]ページが表示されます。測定結果は通常の文字で示され、BINソート結果をが大きな文字で表示されます。

図 5-7 [BIN MEAS] ページ

このページでは以下の情報が表示されます。

- FUNC、RANGE、FREQ、LEVEL、TRIG, LEVEL、 SPEED: これらの状態は、[MEAS DISPLAY]
 ページから設定できます。
- コンパレータ機能のオン/オフ [COMP].
- 補助BINのオン/オフ[AUX].

5.3.1 コンパレータ機能の ON/OFF

本器のコンパレータは、プライマリーパラメータのリミットの最大9セットとセカンダリパラメータのリミット値の 1セットを使用して、最大10BIN(BIN1からBIN9とOUT) にDUTを並べ替えることができます。

プライマリーパラメータのリミット内でセカンダリパラメ ータがリミット外のDUTは、補助BIN(AUX)に分類する ことができます。

コンパレータワークフローについては、60ページの図 5-3を参照してください。

コンパレータ機能を設定するための手順 [COMP]

- Step 1. [Setup] キーを押します。
- Step 2. [BIN MEAS] ソフトキーを押します。
- Step 3. カーソルキーで[COMP] フィールドを選択し ます。
- Step 4. ソフトキーを使用してコンパレータのオン/オ フを切り替えます。

ソフトキー	機能
OFF	COMP機能をオンします。
ON	COMP機能をオフします。

5.3.2 補助 Bin [AUX]

AUXをオンにした後、プライマリリミット値を外れた DUTはOUTとしてソートされます。また、プライマリ パラメータのリミット値内だがセカンダリパラメータの リミット値外のDUTは、補助(AUX)BINに分類されま す。

補助 BIN[AUX]のオン/オフを切り替える P

- Step 1. [Setup] キーを押します。
- Step 2. [BIN MEAS] ソフトキーを押します。
- Step 3. カーソルキーで[AUX] フィールドを選択しま す。
- Step 4. ソフトキーで補助BINのオン/オフを切り替え ます。

ソフトキー	機能
ON	補助BINをオンにします。
OFF	補助BINをオフにします。

5.4 [BIN COUNT] ページ

[Setup] キーと[BIN COUNT] ソフトキーを押すと、 [BIN COUNT] ページが表示されます。

このページには、次の情報が表示されています。

カウント機能 [COUNT]

🗵 5-8	[BIN COUNT] ページ
-------	-----------------

[BIN COUNT	COUNT]	FUNC Cs [.] NOMINAL 1:	-Rs 37.000 pF	MEAS DISPLAY
BIN	LOWER	UPPER	RESULT	DIGI EIII
1	110.0 nF	120.0 nF	0	MEAS
2	120.0 nF	130.0 nF	0	SETUP
3	130.0 nF	140.0 nF	3368	
4	140.0 nF	150.0 nF	0	BIN
5	150.0 nF	160.0 nF	0	SETUP
6	160.0 nF	170.0 nF	0	
7	0.0 pF	0.0 pF	0	BIN
8	0.0 pF	0.0 pF	0	MEAS
9	0.0 pF	0.0 pF	0	
2nd	0.0 Ω	0.9 Ω		
	AUX	0 OUT	11311	
	FILE	SYSTEM	KEY LOCK	

5.4.1 カウンタ機能 [COUNT]

コンパレータ機能を使用して適切なBINにDUTをソート しながら、各BINに分類されたDUTの数がカウントされ ます。

最大カウント99999999に達すると、カウント動作を停止し、オーバーフローメッセージ

「----」が表示されます。

カウンタを設定します:

- Step 1. [Setup] キーを押します。
- Step 2. [BIN COUNT] ソフトキーを押します。
- Step 3. カーソルキーを使用して[COUNT] フィール ドを選択します。
- Step 4. ソフトキーを使用してカウンタ機能を設定し ます。

ソフトキー	機能
COUNT ON	カウンタ機能をオンします。
COUNT OFF	カウンタ機能をオフします。
RESET COUNT	このキーを押すとカウンタをリセット
	します。

この章では以下について説明します。

- SYSTEM CONFIG ページ
- SYSTEM INFO ページ
- SYSTEM SERVICE ページ

6.1 [SYSTEM CONFIG] ページ

[Measure] または[Setup] キーを押すと、[SYSTEM]に 続く下部のソフトキーは、[SYSTEM CONFIG]ページが 表示されます。

以下の情報は、[SYSTEM CONFIG]ページで設定する ことができます。

[Measure] または [Setup] を押し続けて[SYSTEM] ソ フトキーを押すと[SYSTEM CONFIG] ページが表示さ れます。

- システム情報
- システムの日付と時間を設定 [DATE/TIME]
- アカウント設定 [ACCOUNT]
- キーブザー設定 [Key BEEP]
- RS-232Cボーレート設定 [BAUD]
- [HAND SHAKE]
- [ERROR CODE]
- [RESULT]
- [DATA BUFFER]

図 6-1 [SYSTEM CONFIG] ページ

[SYSTEM CO	NFIG]		ſ	SYSTEM INFO
DATE/TIME ACCOUNT	2015-07-06 ADMINISTRATOR	20:19:54 PASSWORD	í	SYSTEM
KEY BEEP BAUD	0N 9600			SERVICE
HAND SHAKE	OFF		(
RESULT	FETCH			
DATA BUFFER	11 SETS			
			2	_
) (RETU	JRN KEY	LOCK	

6.1.1 システムの日付と時間を設定する

本器は、24時間時計を内蔵しています。

日付を設定する

- Step 1. [Measure] または [Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーでDateフィールドを選択します。
- Step 4. ソフトキーで日付を編集します。

ソフトキー	機能
YEAR INCR+	年の設定が1ずつ増加します。
YEAR DECR-	年の設定が1ずつ減少します。
MONTH INCR+	月の設定が1ずつ増加します。
DAY INCR+	日の設定が1ずつ増加します。
DAY DECR-	日の設定が1ずつ減少します。

時間を変更します。

- Step 1. [Measure] または[Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーでTMIEフィールドを選択します。
- Step 4. ソフトキーで時間を編集します。

ソフトキー	機能
HOUR INCR+	時間の設定が1ずつ増加します。
HOUR DECR-	時間の設定が1ずつ減少します。
MINUTE INCR+	分の設定が1ずつ増加します。
MINUTE INCR+	分の設定が1ずつ減少します。
SECOND DECR-	秒の設定が1ずつ増加します。
SECOND DECR-	分の設定が1ずつ減少します。

6.1.2 アカウント設定

本器は、管理者(Administrator)とユーザー(user)の2 つのアカウントを持っています。

- 管理者:: [SYSTEM SERVICE] ページを除いた、すべ ての機能設定することができます。
- ユーザー: [SYSTEM SERVICE] ページと [FILE]ページを除いた全ての機能を設定できます。.

アカウントを変更する

- Step 1. [Measure] または [Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーを使用してACCOUNTフィール ドを選択します。
- Step 4. ソフトキーでアカウントを変更します。

ソフトキー	機能
ADMIN	管理者(Administrator)
USER	ユーザー(User)

ユーザモードを管理者モードまたはユーザーモードに 切り替えるには、入力正しいパスワードをする必要が あります。

管理者パスワードの変更

- Step 1. [Measure] または [Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーを使用し[ADMINISTRATOR] フィールドを選択します。 ACCOUNT フィールドが[USER]のときは、 [ADMINISTRATOR]に変更します。
- Step 4. ソフトキーでパスワードを変更または削除し ます。

ソフトキー	機能
CHANGE	パスワードを入力する
PASSWORD	(9未満の数字).
DELETE	パスワードを削除します。
PASSWORD	

パスワードは忘れないようにしてください。

パスワードを忘れた場合は、弊社までご連絡ください。

6.1.3 キーブザーの設定

キー音の設定.

ブザー機能の設定

- Step 1. [Measure] または [Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーで[KEY BEEP] フィールドを選択します。

Step 4. ソフトキーでブザー音の設定をします。

ソフトキー	機能
ON	キーブザー音をオンします。
OFF	キーブザー音をオフします。

6.1.4 RS-232C のボーレートを設定する

RS-232C経由で本器をリモート制御することができま す前に、RS-232Cのボーレートを設定する必要があり ます。

本器のRS-232Cインターフェースには、SCPI言語を使用しています。

RS-232Cの構成は次のようになります:

データビット:8 bit

ストップビット:1 bit

パリティ:なし

ボーレートを設定する

- Step 1. [Measure] または [Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーで[BAUD] フィールドを選択し ます。

Step 4. ソフトキーでボーレートを選択します。

ソフトキー	機能
1200	ボーレートを1200に設定します。
9600	ボーレートを9600に設定します。
38400	ボーレートを38400に設定します。
57600	ボーレートを57600に設定します。
115200	ボーレートを115200に設定します。

6.1.5 ハンドシェークの確認

ハンドシェイクがオンになっている場合、最初のコマンドの応答文字列の前に、PCから受信したコマンドを返します。

例:PCからコマンドを送信 idn?

本器からの応答文字列:

idn? LCR-6300 RevC1.0

ハンドシェーク機能を設定する

Step 1. [Measure] または [Setup] キーを押します。

- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーで[HAND SHAKE]フィールドを 選択します。

Step 4. ソフトキーでハンドシェークを設定します。

ソフトキー	機能
OFF	ハンドシェーク機能をオンにする。
ON	ハンドシェーク機能をオフにする。

6.1.6 エラーコード

エラーコード設定がオンの場合は、誤ったコマンドや 無効なコマンドを受信した場合、本器はエラーコード を返します。

- "*E00", //エラーなし
- "*E01", //"Bad command",
- "*E02", //"パラメータエラー",
- "*E03", //"パラメータの欠落",
- *"**E04*"*, //*"*バッファーオーバーラン*"*,
- "*E05", //"シンタックスエラー",
- "*E06", //無効な区切り",
- "*E07", //"無効なマルチプレクサ",
- "*E08", //"数値データエラー",
- "*E09", //"長すぎる値",
- "*E10", //"無効なコマンド"
- "*E11", //"不明なエラー"

エラーコード機能の設定

- Step 1. [Measure] または [Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーで[ERROR CODE]フィールドを 選択します。
- Step 4. ソフトキーでエラーコード設定を設定します

0	
ソフトキー	機能
OFF	エラーコード機能をオンします。
ON	エラーコード機能をオフします。

6.1.7 自動応答(Result)設定

Result設定が自動に設定されている場合、本器はテ ストが終了するたびに自動的に測定結果を送信しま す。この設定は、本器が部品選別機と一緒に動作し ている場合に特に便利です。本器は、トリガ信号を受 信した後にテストを開始し、選別機やPCから の"fetch?" コマンドを受信しなくても選別機にテスト結 果を返すことができます。.

Result 機能を設定する

- Step 1. [Measure] または [Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーで[RESULT] フィールドを選択 します。
- Step 4. ソフトキーで応答内容を設定します。

ソフトキー	機能
FETCH	テスト完了後のテスト結果を送信し ません。
AUTO	テスト完了後のテスト結果を送信し ます。

6.1.8 データバッファ

データバッファ設定は、内部バッファに格納できる最 大レコードカウント数を設定します:

設定範囲1~10000

データバッファ機能を設定する

- Step 1. [Measure] または [Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーで[DATA BUFFER] フィールド を選択します。
- Step 4. Entryキーで数値を入力するか最大カウント 数で設定します。

ソフトキー	機能
MAX	最大レコード数(10000)に設定しま
	す。

6.2 [SYSTEM INFO] ページ

[SYSTEM] ソフトキーに続けて[Measure] または [Setup]キーが押されると[SYSTEM INFO] ソフトキー、 [SYSTEM INFO]ページが表示されます。

[SYSTEM INFO]ページには、設定可能なオプションは ありません。

図 6-2 [SYSTEM INFO] ページ

[SYSTEM INF MODEL	ORMATION]	R Meter		(SYSTEM CONFIG
SERIAL NU.	1504003				
FW VERSION	REV C4.1				SYSTEM
OS VERSION	V4.20				SERVICE
LOGIC UNIT	REV DØ				
SIGNAL UNIT	REV FØ				
USB I/F	REV A1				
BIAS MODULE	INSTALLED				
HANDLER I/F	INSTALLED			1	
				l	
		ETURN	KEY	LOCK	

この章では、ファイル操作に関して説明します。

内部の不揮発性メモリにパネル設定を10ファイル(No.0~9)まで保存することができます。

外部USBメモリにも10ファイル(No10~19)まで保存できます。

7.1 [FILE] ページ

[FILE]ソフトキーに続いて[Setup] キーが押されると、 [FILE] ページが表示されます。

図 7-1 [FILE] ページ

このページでは、対応するフィールドにカーソルがあるとき以下の各コントロールを設定することができます。

- [AUTO RECALL].に設定されている場合、起動時のファイルを呼出ます。
- [AUTO SAVE].に設定している場合、終了(電源 オフ)時にファイルを自動的に保存します。

7.1.1 [MEDIA]

Mediaフィールドでは、内部メモリまたは外部USBフラ ッシュドライブのいずれかをソースとして選択するため に使用します。どちらかのソースから最大10個のファ イルへアクセスすることができます。

- Step 1. [Setup] キーを押します。
- Step 2. [FILE] ソフトキーを押します。
- Step 3. カーソルキーで[MEDIA] フィールドを選択し ます。
- Step 4. ソフトキーでソースを選択します。

MEDIA USB DISK

ソフトキー	機能
INTERNAL	内部メモリのファイルへアクセスしま
MEMORY	す。
USB MEMORY	外部USBフラッシュドライブのファイ
	ルヘアクセスします。

7.1.2 開始時にファイルを呼び出す [AUTO RECALL]

本器を起動するときに、File 0または最後に指定した 設定ファイルを呼び出すことができます。

ファイルの自動呼出しを選択する

- Step 1. [Setup] キーを押します。
- Step 2. [FILE] ソフトキーを押します。
- Step 3. カーソルキーで[AUTO RECALL] フィールド を選択します。
- Step 4. ソフトキーで呼出オプションを選択します。 AUTO RECALL LAST ETLE

ソフトキー	機能
LAST FILE	次回起動時に最後に使用したファイ ルを呼び出します。
FILE 0	次回起動時にFile 0が呼び出されま す。
▲注意:	最後にUSBディスクのファイルを指 定し、次回起動時にUSBディスクが 無い場合、File 0を呼び出します。

7.1.3 オートデータセーブ [AUTO SAVE]

電源キーが押されたとき、最後に使用したファイルに 変更された設定を保存することができます。

▲ 注意:この機能は、内蔵メモリにのみ適応されま す。

外部USBディスクでは、動作しません。

AUTO SAVE 機能のオン/オフを切り替えます

- Step 1. [Setup] キーを押します。
- Step 2. [FILE] ソフトキーを押します。
- Step 3. カーソルキーで[AUTO SAVE] フィールドを 選択します。
- Step 4. ソフトキーでSAVEオプションを選択します。 AUTO SAVE ON

ソフトキー	機能
ON	Auto save機能を有効にします。
OFF	Auto save機能をオフにします。

7.1.4 ファイル操作

操作するファイルを選択するには

- Step 1. [Setup] キーを押します。
- Step 2. [FILE] ソフトキーを押します。
- Step 3. カーソルキーでファイル(ファイル名0から9) を選択します。

Step 4. ソフトキーで操作を実行します。

ソフトキー	機能	
SAVE	現在選択されているファイルに ユーザー設定データを保存し ます。	SAVE
RECALL	現在選択されているファイルか ら設定データを呼出ます。	RECALL
ERASE	選択したファイルを消去しま す。 ユーザ設定データは、次回起 動時にデフォルトにリセットされ ます。	ERASE
MODIFY DES	ファイルの説明を変更します。	MODIFY DES

この章では、ハンドラインタフェースに関して説明します。

- ピンの割り当て
- 回路部
- タイミング図

ハンドラインタフェースは、測定サイクルの終わりとコ ンパレータによるBINソートの結果の信号を出力しま す。また、外部トリガ信号を受け付けます。これらの信 号を使用することでコンポーネントハンドラやシステム コントローラ等とLCR-6000シリーズをシステムアップ することで部品検査、部品の並べ替えなどのタスクを 自動化し生産効率の向上が可能です。

8.1 ピンの割り当て

図 8-1

ピンの割り当て

入力ピン

ハンドラインターフェース信号~出力ピン

ピン番号	ピンの名称	信号について	
1	O_BIN_1	ソート結果がBIN1の範囲内。	
		アクティフロー。	
2	O BIN 2	ソート結果がBIN2の範囲内。	
	O_DIN_Z	アクティブロー。	
3	O_BIN_3	ソート結果がBIN3の範囲内。	
		アクティブロー。	
4	O_BIN_4	ソート結果がBIN4の範囲内。	
		アクティブロー。	
F	O_BIN_5	ソート結果がBIN5の範囲内。	
5		アクティブロー。	
6		ソート結果がBIN6の範囲内。	
0		アクティブロー。	
7		ソート結果がBIN7の範囲内。	
/	O ^{BIN} 1	アクティブロー。	
0		ソート結果がBIN8の範囲内。	
8	O_BIN_8	アクティブロー。	
0		ソート結果がBIN9の範囲内。	
9	O_BIN_9	アクティブロー。	
10		NC	
11		NC	
12		NC	
13		NC	
	O_S_OVER	セカンダリ測定パラメータでOver	
		failが発生。アクティブロー。(こ	
14		のピンの信号は、AUXがオンされ	
		た後にのみ利用可能です。)	
	O_P_OVER	プライマリ測定パラメータでOver	
15		failが発生。アクティブロー。	
		このピンのロジック状態 = O_P_HI	
		OR O_P_LO.	
	O_P_HI	プライマリ測定パラメータでHi fail	
19		が発生。アクティブロー。	
20	O_P_LO	プライマリ測定パラメータでLow	

		fail が発生。アクティブ・ロー。
21	O_NG	全試験結果はover failです。
		アクティブロー。
		このピンのロジック状態=
		O_S_OVER OR O_P_OVER.
22	O_INDEX	このピンは、AD変換が実行中を
		示します。
		Lowのとき、まだ終了していませ
		\mathcal{K}_{\circ}
23	O_EOM	このピンがLowレベルのとき、テ
		ストはまだ進行中で、まだ終了し
		ていないことを示しています。

出力ピン

表 8-2

ハンドラインターフェース信号~入力ピン

	• • •	
ピン番号	ピンの名称	信号について
24	I_E_TRIG	外部トリガ入力。
		立ち上がりエッジでアクティブ。
25	I_K_LOCK	キーパッドロック信号。このピン がハイレベルのときは、前面パネ ルのキーパッドのロックし、この ピンをLowにすると、前面パネル
		のキーパッドをロックを解除します。

電源ピン

表 8-3

ハンドラインターフェース信号~電源ピン

ピン番号	ピンの名称	信号について
16,18	GND	外部電源入力用のGND端子
17	VCC	外部電源入力用のVcc端子

8.2 接続

インターフェースの電気仕様

インタフェースの電源要件:+12.4V~DC 36V、0.2A(最少).

出力回路:内蔵プルアップ抵抗は、内部で出力トランジスタのコレクタ端 子に接続されています。出力ピンは、フォトカプラによって分離されていま す。

入力端子:フォトカプラにより絶縁されています。

出力ピンの回路

図 8-3

出力ピンの回路(Binソート、Index, EOM)

最大ソース電流: 5mA.

最大シンク電流: 50mA

8.3 ハンドラインターフェースのタイミングチャート

図 8-4

表 8-4

タイミング定義

時間セグメント		最小値	
T1	トリガのパルス幅		1ms
Т2	測定	トリガ遅延時間	< 10µs
Т3	サイクル	アナログ測定時間	設定に依存
Τ4		デジタル演算時間	1ms
Т5		Bin出力遅延時間	200µs
Т6	出力後のトリガ待ち時間 Os		0s

9.

この章では、基本的な測定手順とおよび基本的なL、CおよびRの測定理 論をカバーしています。また、いくつか測定のヒントを紹介しています。 基本的な測定手順の説明の後、本器を使用して実際の測定例を説明し ています。

9.1 基本的な測定手順

以下のフローチャートは、キャパシタ、インダクタ、抵 抗器、および他のコンポーネントのインピーダンスを 測定するための基本的な手順を示しています。 各ステップの右側の説明を参照しながら、インピーダ ンス測定を行います。 図 9-1 基本の測定手順

9.2 例

ここでは、セラミックコンデンサを測定する実用的な例 を説明します。

この測定を行うための基本的な手順の流れは、前述の基本的な測定手順と同じです。この例では、セラミックコンデンサは、次の条件で測定します:

サンプル (DUT) セラミックコンデンサ測定条件:

• 測定機能: Cs-D

- テスト周波数: 1kHz
- テスト信号レベル:1V
- Step 1. 本器の電源を投入します。
- Step 2. [MEAS DISPLAY]ページのフィールドで測定 条件を設定します。
 - カーソルで[FUNC]フィールドへ移動し Cs-Dを選択します。
 - カーソルで[FREQ] フィールドへ移動し 1kHzを入力します。
 - カーソルで[LEVEL] フィールド へ移動し 1Vを入力します。
- Step 3. 本器にテストフィクスチャを接続します。
- Step 4. テストフィクスチャを使用するために、先ず 初めにユーザ補正が必要です。 以下に示すように、テストフィクスチャに任意 のDUTを接続しないでください
 - [Measure] キーを押し[OPEN SHORT]
 ソフトキーを押します。
 - カーソルを使用して[OPEN TEST]または [SPOT] フィールドへ移動します。
 - 次に示しているように、クリップ(テストフィクスチャ)に何にも接続しないでください:

- [MEAS OPEN] ソフトキーを押し次に
 [OK] ソフトキーを押します。
 "Correction finished"メッセージが表示 されるまで待ちます。
- 5. [OPEN]フィールドがOFFの場合は、 [ON]ソフトキーを押します。
- カーソルキーで[SHORT TEST]または
 [SPOT] へ移動します。
- 次に示すように、テストフィクスチャの クリップを短絡(ショート)してください:

- [MEAS SHORT] ソフトキーを押し次に
 [OK] ソフトキーを押します。"Correction finished"メッセージが表示されるまで待ちます。
- 9. [SHORT]フィールドがOFFに設定されて いる場合は[ON]ソフトキーを押します。

Step 5. 次図の様にテストフィクスチャにDUTを接続 します。 図 9-2 測定結果

10. ノモートコントロール

この章では、RS-232Cを経由してLCR-6000シリーズをリモートコントロー ルするために説明をします。

- RS-232Cについて
- ボーレートの選択
- SCPIについて

本器は、RS-232Cインターフェースを使用してすべての機能をコンピュータから実行することができます。

10.1 RS-232C について

RS-232C(Dsub-9ピン)ケーブルを使用して、本器の RS-232Cポートとコントローラ(例:PCとPLC)を接続 することができます。

シリアルポートは、RS-232C 規格の送信(Txd)、受信 (Rxd)と信号グランド(GND)を使用します。 ハードウェアハンドシェイクの CTS と RTS は使用して いません。

ケーブル長は、2mを超えてはいけません。

図 10-1

背面パネルのRS-232Cポート

Pin 2: RxD/Pin 3: TxD Pin 5: GND Pin 1、4、6 ~ 9:未使用

- LCR-6000シリーズに接続するコントローラが以下の設定であることを確認してください。この設定を使用して、RS-232インターフェースのデータを転送します:
- 8データビット、1ストップビット、パリティなし。

10.2 ボーレートを設定する

DB-9コネクタをに接続されたRS-232コントローラから のRS-232Cコマンドを発行して、本器を制御する前 に、RS-232のボーレートを設定する必要があります。

本器のRS-232インターフェースは、SCPI言語を使用 しています。RS-232の構成は次のとおりです::

- データビット: 8-bit
- ストップビット: 1-bit

パリティ: なし

- ボーレートを設定する
- Step 1. [Measure] または [Setup] キーを押します。
- Step 2. [SYSTEM] ソフトキーを押します。
- Step 3. カーソルキーで[BAUD]フィールドを選択しま す。
- Step 4. ソフトキーでボーレートを選択します。

ソフトキー	機能
1200	ボーレートを1200に設定します。
9600	ボーレートを9600に設定します。
38400	ボーレートを38400に設定します。
57600	ボーレートを57600に設定します。
115200	ボーレートを115200に設定します。

10.3 SCPI 言語

本器のRS-232Cは、SCPI(Standard Commands for Programmable Instruments)をフルサポートしています。

11. コマンドリファレンス

11.1 ターミネータ

<u>〈NL</u>〉: EOIラインは、New LineまたはASCIIラインフィード文字でアサートされます。(Decimal 10, Hex 0x0A またはASCII '¥n')

11.2 表記規則と定義

次の規則および定義がRS-232の動作を説明するために、この章で使用 されています。

<>アングルカッコは、プログラムコードのパラメータまたはコマンドを記号 化するために使用される単語や文字を囲みます。

[] 角括弧は、囲まれた項目がオプションであることを示しています。 ¥n コマンドターミネータ

11.3 コマンド構造

LCR-6000のコマンドは、コモンコマンドとSCPIコマンドの2つのタイプに分けられます:

コモンコマンドは、IEEE std. 488.2-1987で定義されこれらのコマンドは、 すべてのデバイスで共通です。SCPIコマンドは、本器の機能すべてを制 御するために使用できます。

SCPIコマンドは、3レベルまでの階層構造です。最高レベルのコマンドは、 本書ではサブシステムコマンドと呼んでいます。

そのため下位レベルのコマンドは、サブシステムのコマンドを選択した場合にのみ有効です。

コロン(:)は、より高いレベルのコマンドと下位レベルのコマンドを区切るために使用されます。

セミコロン(;)は、現在のパスを変更せず同じメッセージで2つのコマンドを 分離します。

図 11-1 コマンドツリー例

例

function:imp:type Cp-D

function サブシステムコマンド imp レベル 2 type レベル 3 Cp-Dパラメータ

コマンドツリーの基本的なルールは次のようになりま す。

文字(大文字と小文字)は無視されます。
 例;

FUNCTION: IMPEDANCE= function:impedance

空白文字(スペース)(は空白文字を示します)は、コロン(:)の前後に入れてはいけません。
 例;
 調出 functions → エレン functions

誤り func_:_imp →正しい func:imp

- コマンドは、全文または省略形で記述することができます。(コマンドの省略形のルールは、このセクションで後述します)
 例;
 function: impedance=func:imp
- クエリコマンドはコマンドヘッダの後ろに疑問符(?) を付けます。
 例:

function:imp?

セミコロン(;)は、一行で複数のコマンドを実行するためのセパレータとして使用すること

ができます。

複数のコマンドのルールは、次のようなもの があります。同じサブシステムコマンドグル ープ内の同じレベルのコマンドは、複数のコ マンドラインをセミコロン(;)で区切ることがで きます。

例:func:imp:type cp-d;rang 4

最高レベルからコマンドを連続するには、セミコロン(;)をセパレータとして使用する必要があります。コマンドが再度始まることを表す先頭のコロン(:)は、コマンドツリーの上部にあるコマンドで次のようにする必要があります。
 例:func:imp:range:auto on;[: func:imp cp-d

^{by} Tunc.imp.range.auto on, <u></u>unc.imp cp-a

 コモンコマンドは、マルチコマンドラインではセミコ ロンの後に続けることができます。
 例: func:rang 8;*IDN?;auto on

• コマンド省略形:

 すべてのコマンドと文字パラメータは、省略(短文)形式と長形形式の二つの方法があり ます。
 いくつかの場合では、それらは同じです。
 省略形式は、次のルールに従います。規則
 を用いて得られます。
 A)長文形式が4文字以下の場合には、長文
 形式と省略形式は同じです。

B) 長文形式で4文字以上の場合:

(a) 4番目の文字が母音である場合、短 文形式は、長文形式の最初の3文字になり ます。

例:

volume の省略形は vol

resistanceの省略形は res

(b) 4番目の文字が母音で無い場合、短
 文形式は、長文形式の最初の4文字になり
 ます。

例:

range の省略形は rang comparatorの省略形はcomp current の省略形はcurr

長文形式のニーモニックが一単語以上のフレーズとして定義されている場合、長文形式のニーモニックは、全体の最後の単語が続く最初の単語(複数可)の最初の文字です。
 上記のルールは、長文形式のニーモニックが単語のみの場合、その後、短文形式を取得するために、得られた長い形式のニーモニックに適用されます。
 例えば::

PercentToleranceは、ptolと略称します。

11.4 ヘッダとパラメータ

コマンドは、コマンドヘッダとパラメータで構成されています。(以下を参 照してください。)

例:

comp:nom 100.0e3

ヘッダ パラメータ

ヘッダは、長文形式または短文形式ができます。長文 形式は、プログラムコードの理解が容易で、短文形式 は、プログラムを効率的にできます。次のようにパラ メータは、2つのタイプが可能です。(A)文字データと 文字列データの文字データはASCII文字で構成されて います。略語のルールは、コマンドヘッダのルールと 同じです。

(B) 数値データ

- (a) NR1 整数 : 1,+123,-123
- (b) NR2 固定小数点:1.23,+1.23,-1.23
- (c) NR3 浮動小数点:1.23e3, 5.67e-3, 123k,

1.23M, 2.34G,
数値データで使用可能な範囲は、9.9E37です。 数値データがパラメータとして使用される場合、接尾 記号及び接尾単位は、以下のようにいくつかのコマン ドで使用することができます。(接尾記号は、接尾単位 と一緒に使用する必要があります。)

表 11-1

接尾記号:Multiplier Mnemonics

定義	略語
1E18 (EXA)	EX
1E15 (PETA)	PE
1E12 (TERA)	Т
1E9 (GIGA)	G
1E6 (MEGA)	МА
1E3 (KILO)	К
1E-3 (MILLI)	М
1E-6 (MICRO)	U
1E-9 (NANO)	Ν
1E-12 (PICO)	Р
1E-15 (PEMTO)	F
1E-18 (ATTO)	A

11.5 コマンドリファレンス

このリファレンス内のすべてのコマンドは、以下の機能コマンド順に説明しています。

- DISPlay サブシステム
- FUNCtion サブシステム
- FREQuency サブシステム
- VOLTage サブシステム
- APERtureサブシステム
- FETCh サブシステム
- COMParator サブシステム
- LISTサブシステム
- CORRection サブシステム
- TRIGger サブシステム
- BIAS サブシステム
- FILE サブシステム
- ERRor サブシステム
- Common コマンド:
- *TRG
- *IDN?
- *SAV
- *RCL

各サブシステムコマンドの説明は、次のような形式で 説明します。

- 1. サブシステムコマンド名
- 2. コマンドツリー (サブシステムコマンドのみ)
- 3. 複合コマンド名
- 4. コマンドの説明
- 5. コマンド構文
- 6. 上記のコマンド構文を使用した例
- 7. クエリ構文
- 8. クエリに対する応答
- 9. 上記のクエリ構文を使用した例
- 10. 制約·条件

コマンド一覧

DISPlay サブシステム	103
DISP:LINE	103
DISP:PAGE	103
FUNCtion	105
FUNCtion:IMPedance:AUTO	106
FUNCtion:IMPedance:RANGe	106
FUNCtion:DCR:RANGe	106
FUNCtion:RANGe:AUTO	107
FUNCtion:MONitor1 /2	107
FREQ	108
LEVel サブシステム	
LEVel:VOLTage (=VOLTage[:LEVel])	109
LEVel:CURRent (=CURRent[:LEVel])	110
LEVel:SRESistance (= VOLTage:SRESistance)	110
LEVel:ALC (=AMPlitude:ALC)	111
LEVel:MODe?	111
APERture サブシステム	
APERture:RATE?	112
APERture:AVG?	112
FETCh サブシステム	
FETCh?	113
FETCh:IMPedance?	114
FETCh:MAIN?	
FETCh:MONitor1? /2?	
FETCh:MONitor?	115
FETCh:LIST?	115
COMParator サブシステム	
COMParator:STATe	117
COMParator:MODE	117
COMParator:AUX	117
COMParator:BINS	118
COMParator:TOLerance:NOMinal	118
COMParator:TOLerance:BIN	118
COMParator:SLIM	119
COMParator:BEEP	119
COMParator:OPEN	120

LIST サブシステム	
LIST:PARAmeter	
LIST:STAT	
LIST:BAND	

CORRection サブシステム

CORRection:OPEN123
CORRection:OPEN:STATe
CORRection:SHORt
CORRection:SHORt:STATe
CORRection:SPOT:FREQuency
CORRection:SPOT:OPEN
CORRection:SPOT:SHORt
TRIGger サブシステム
TRIGger[:IMMediate]
TRIGger:SOURce
TRIGger:DELAY
BIAS サブシステム
BIAS
ファイル サブシステム
FILE?
FILE:SAVE
FILE:LOAD
FILE:DELete
ERRor サブシステム128
ERRor?
SYSTEM サブシステム
SYSTem:SHAKehand
SYSTem:CODE129
SYSTem:KEYLock
SYSTem:RESult
コモンコマンド
*IDN?
*TRG
*SAV
*RCL

11.6 DISPlay サブシステム

DISPサブシステムのコマンドグループは、Displayペー ジの設定をします。

図 11-2

コマンドツリーの例

11.6.1 DISP:LINE

:LINEコマンドは、ASCII文字で最大30文字まで任意のコメント行をコメント 欄に入力します。

コマンド構文	DISP:LINE "< <i>string</i> >"
パラメータ	<string>は、ASCII文字列(最大30文字のASCII文字)</string>
例	送信コマンド> DISP:LINE "This is a comment."
	//コメント欄に「This is a comment」を表示します。

11.6.2 DISP:PAGE

:PAGEコマンドは、どのDisplayページを表示するか指定します。

:PAGE?クエリは、現在、LCD画面に表示されているページの略称名を返します。

コマンド構文	DISP:PAGE <page name=""></page>
パラメータ	<page name="">は:</page>
	MEASurement [またはMEAS] は、表示ページを
	MEAS DISPLAYIこ設定します。
	ENLARGE[またはENLA]は、表示ページを

	ENLARGE DISPLA YIこ設定します。
	BINMEAS [またはBINM] は、表示ページをBIN
	MEASIC設定します。
	BINCOUNT [またはBCO] は、表示ページをBIN
	COUNTIC設定します。
	<i>LISTMEAS [またはLIST]</i> は、表示ページを <i>LIST</i>
	MEASに設定します。
	SETUP [またはMSET]は、表示ページをMEAS
	<i>SETUP</i> に設定します。
	CORRECTION [またはCSET] は、表示ページを
	CORRECTIOMに設定します。
	BINSETUP [またはBSET] は、表示ページをBIN
	<i>SETUP</i> に設定します。
	<i>LISTSETUP [またはLSET]</i> は、表示ページを <i>LIST</i>
	<i>SETUP</i> に設定します。
	CATalog [またはCAT]は、表示ページをCATALOG
	に設定します。
	<i>SYSTem [またはSYST]</i> は、表示ページを <i>SYSTEM</i>
	CONFIGに設定します。
	SYSTEMINFO [またはSINF]は、表示ページを
	SYSTEM INFORMATIOMに設定します。
例	送信コマンド> DISP:PAGE SYST <nl>//</nl>
	SYSEMT CONFIGに設定します。
クエリ構文	DISP:PAGE?
クエリ応答	<page name=""><nl></nl></page>
例	送信クエリ> DISP:PAGE? <nl></nl>
	受信> SYST <nl></nl>

11.7 FUNCtion サブシステム

FUNCtionサブシステムのコマンドグループは、モニタのパラメータ制御、 測定機能、測定範囲を設定します。

図 11-3

FUNCtion サブシステムの階層

11.7.1 FUNCtion

FUNCtionコマンドは、測定機能を設定します。

コマンド構文	FUNC <function></function>
パラメータ	<function>は:</function>
	Cs-Rs, Cs-D, Cp-Rp, Cp-D, Lp-Rp, Lp-Q, Ls-Rs,
	Ls-Q, Rs-Q, Rp-Q, R-X, DCR, Z- θ r(or Z-thr)*1,
	$Z-\theta d(Z-thd) *1, Z-D, Z-Q.$
	(*1: θ (tascii Hex 0xE9)

例	送信コマンド> FUNC Cp-D <nl></nl>	
	内容//測定機能をCp-Dに設定します。	
クエリ構文	FUNC?	
クエリ応答	<function></function>	
例	送信> FUNC? <nl></nl>	
	受信> Cp-D <nl></nl>	

11.7.2 FUNCtion:IMPedance:AUTO

FUNCtion:IMPedance:AUTOコマンドは、インピーダンスLCZ自動選択を設定します。

コマンド構文	FUNC:IMPedance:AUTO {ON,OFF, 0,1}	
例	送信> FUNC:IMP:AUTO ON <nl></nl>	
クエリ構文	FUNC:IMPedance:AUTO?	
クエリ応答	{on,off} <nl></nl>	
例	送信> FUNC:IMP:AUTO? <nl></nl>	
	応答〉 off <nl></nl>	

11.7.3 FUNCtion:IMPedance:RANGe

FUNCtion:IMPedance:RANGeコマンドは、インピーダンスの測定レンジを 設定します。

コマンド構文	FUNC:IMPedance:RANGe <0-8,MIN,MAX>
パラメータ	<0-8,MIN, MAX> は:
	0-8 レンジ番号
	MIN =レンジ 0
	MAX =レンジ 8
例	送信> FUNC:IMP:RANG 2 <nl></nl>
	内容//測定レンジを[2] 10kΩに設定します。
クエリ構文	FUNC:IMPedance:RANGe?
クエリ応答	<0-8> <nl></nl>
例	送信> FUNC:IMP:RANG? <nl></nl>
	応答> 0 <nl></nl>

11.7.4 FUNCtion:DCR:RANGe

FUNCtion:DCR:RANGe コマンドは、DCRの測定レンジを設定します。

コマンド構文	FUNC:DCR:RANGe <0-8,MIN,MAX>
パラメータ	<0-8,MIN, MAX>は:
	0~8 レンジ番号

	MIN = Range 0	
	MAX = Range 8	
例	送信コマンド> FUNC:DCR:RANG 2 <nl></nl>	
	//DCRレンジを[2] 10kΩに設定します。	
クエリ構文	FUNC:DCR:RANGe?	
クエリ応答	<0~8> <nl></nl>	
例	送信> FUNC:DCR:RANG? <nl></nl>	
	応答> 0 <nl></nl>	

11.7.5 FUNCtion:RANGe:AUTO

FUNCtion:RANGe:AUTOコマンドは、オートレンジをONまたはOFFに設定します。

コマンド構文	FUNC:RANGe:AUTO {off(hold),on(auto),NOMinal}		
パラメータ	{off(hold),on(auto),NOMinal} は:		
	off(またはhold): オートレンジをOFFに設定		
	on(またはauto): オートレンジをONに設定.		
	NOMinal: Sets the range No.		
例	送信コマンド〉 FUNC:RANG:AUTO AUTO <nl></nl>		
	//オートレンジに設定します。		
	送信コマンド〉 FUNC:RANG:AUTO off <nl></nl>		
	//オートレンジをオフに設定します。		
クエリ構文	FUNC:RANGe:AUTO?		
クエリ応答	{HOLD,AUTO,NOM}		
例	送信> FUNC:RANG:AUTO? <nl></nl>		
	応答〉 auto <nl></nl>		

11.7.6 FUNCtion:MONitor1 /2

FUNCtion:MONitor1と FUNCtion:MONitor2コマンドは、2つのモニタパラ メータを設定します。

コマンド構文	FUNC:MONitor1 {off, Z, D, Q, THR, THD, R, X, G, B, Y,			
	ABS, PER VAC, IAC}			
	FUNC:MONitor2 {off, Z, D, Q, THR, THD, R, X, G, B, Y,			
	ABS, PER VAC, IAC}			
パラメータ	{off, Z, D, Q, THR, THD, R, X, G, B, Y, ABS, PER VAC,			
	IAC}			
例	送信> FUNC:MON1 Z <nl></nl>			
クエリ構文	FUNC:MON1?			

	FUNC:MON2?		
クエリ応答	{off, Z, D, Q, THR, THD, R, X, G, B, Y, ABS, PER VAC, IAC}		
クエリ例	送信> FUNC:MON1? <nl> 応答> off<nl></nl></nl>		

FREQuency サブシステム

FREQuency コマンドは、テスト周波数を設定します。FREQuency? クエリは、現在の設定されたテスト周波数を返します。

図 11-4 FREQサブシステムの階層

11.7.7 FREQ

コマンド構文	FREQ[:CW] { <value>,MIN,MAX}</value>		
パラメータ	<value> 数値データ(NR1, NR2またはNR3).</value>		
	MIN 最小値に設定		
	MAX 最大値に設定		
例	送信コマンド> FREQ 1K <nl></nl>		
	//1kHzに設定します。単位[Hz]は不要		
クエリ構文	FREQ[:CW]?		
クエリ応答	<nr3><nl></nl></nr3>		
	NR3は、浮動小数点		
例	送信> FREQ? <nl></nl>		
	応答> 1.000000E+03 <nl></nl>		
	このコマンドでは、接尾記号(k)を使用できます。しか		
✓ → 注意	し、接尾単位(Hz)を使用することができません。		
	このコマンドは、LIST SWEEP DISPLAYページと		
	CORRECTIONページで使用することはできません。		

11.8 LEVel サブシステム

Levelサブシステムは、テスト信号の出力電圧/電流レベルとソース出力 インピーダンスを設定します。

図 11-5

LEVel サブシステムの階層

11.8.1 LEVel:VOLTage (=VOLTage[:LEVel])

LEVel:VOLTage または VOLTage[:LEVel]は、テスト信号の出力電圧レベ ルを設定します。

コマント構文	LEVel:VOLTage { <value>,MIN,MAX}</value>		
	またはVOLTage:LEVel { <value>,MIN,MAX}</value>		
パラメータ	<value> 数値データ(NR1, NR2 または NR3).</value>		
	MIN 電圧を最小に設定します。		
	MAX 電圧を最大に設定します。		
例	送信ンコマンド> LEV:VOLT 0.3 <nl></nl>		
	//電圧を0.3Vに設定、単位記号Vは使用しません。		
クエリ構文	LEVel:VOLTage?		
	または VOLTage:LEVel?		
クエリ応答	<nr3></nr3>		
	NR3は、浮動小数点		
例	送信> VOLT? <nl></nl>		
	応答> 1.000e+00 <nl></nl>		
$\mathbf{\Lambda}$	単位記号Vは使用しません。		
│ ∠ ∔ 〕 注意	このコマンドは、LIST MEASページとCORRECTION		
	ページでは使用できません。		

11.8.2 LEVel:CURRent (=CURRent[:LEVel])

LEVel:CURRentまたはCURRent[:LEVel]コマンドは、テスト信号の出力電流レベルを設定します。

コマンド構文	LEVel:CURRent { <value>,MIN,MAX}</value>		
	またはCURRent:LEVel { <value>,MIN,MAX}</value>		
パラメータ	<value> 数値データ(NR1, NR2 または NR3).</value>		
	MIN 電流を最小値に設定します。		
	MAX 電流を最大値に設定します。		
例	送信コマンド> LEV:CURR 1m <nl></nl>		
	// 1mAに設定します。単位記号Aは使用しません。		
クエリ構文	LEVel:CURRent?		
	またはCURRent:LEVel?		
クエリ応答	<nr3></nr3>		
	NR3は、浮動小数点		
例	送信> CURR? <nl></nl>		
	応答> 1.000e+00 <nl></nl>		
$\mathbf{\Lambda}$	単位記号Aは使用しません。		
└・・ヽ 注意	このコマンドは、LIST MEASページとCORRECTION		
	ページでは使用できません。		

11.8.3 LEVel:SRESistance (=

VOLTage:SRESistance)

LEVel:SRESistance または VOLTage:SRESistanceコマンドは、ソースの 出力インピーダンスを設定します。

コマンド構文	LEVel:SRESistance {30,50,100}		
	VOLTage:SRESistance {30,50,100}		
パラメータ	{30,50,100}		
	30 出力インピーダンスを30Ωに設定します。		
	50 出力インピーダンスを50Ωに設定します。		
	100 出力インピーダンスを100Ωに設定します。		
例	送信> LEV:SRES 30 <nl></nl>		
	//30Ωに設定します。単位[Ω]は不要		
クエリ構文	VOLTage:SRES?		
	または LEVel:SRES?		
クエリお応答	<nr1></nr1>		
	NR1は整数		

例	送信>	LEV:SRES? <nl></nl>
	応答>	30 <nl></nl>
	単位記号	βΩは使用しません。
	このコマ	ンドは、LIST SWEEP. DISPLAYページと
—— 注息	CORREC	CTIONページでは使用できません。

11.8.4 LEVel:ALC (=AMPlitude:ALC)

LEVel:ALCまたはAMPlitude:ALCコマンドは、オートレベルコントロール (ALC)を有効にします。

コマンド構文	LEVel:ALC {on,1,off,0}		
	AMPlitude:ALC {on,1,off,0}		
パラメータ	{on,1,off,0}		
	on(1) ALCを有効にする		
	off(0) ALCを無効にする.		
例	送信> LEV:ALC on <nl></nl>		
クエリ構文	LEV:ALC?		
	または AMP:ALC?		
クエリ応答	{on,off}		
例	送信> LEV:ALC? <nl></nl>		
	応答> off <nl></nl>		
\square	このコマンドは、LIST MEASページとDCRページでは		
∠ ♪ 注意	使用できません。		

11.8.5 LEVel:MODe?

LEVel:MODe?クエリコマンドは、レベルモード(電圧または電流)を返します。

クエリ構文	LEVel:MODe?	
クエリ応答	{volt, curr}	
例	送信> LEVel:MODe? <nl></nl>	
	応答> volt	

11.9 APERture サブシステム

APERtureサブシステムコマンドは、ADCの積分時間と平均レートを設定します。

図 11-6

APERture サブシステムコマンドの階層

	APERtur	re{SLOW,MED,FAST}
		<averaging rate="" value:nr1=""></averaging>
コマンド構文	APERtur	e {SLOW,MED,FAST}
	APERtur	e <value></value>
	SPEED(s	spd) {SLOW,MED,FAST}
	SPEED(s	spd) <value></value>
パラメータ	SLOW	測定スピードをslowに設定します。
	MED	測定スピードをmediumに設定します。
	FAST	測定スピードをfastに設定します。
	<value></value>	NR1(0から256):平均回数(0=OFF=1)
伤山	送信>	APER FAST <nl></nl>
ניען	送信>	APER 10 <nl></nl>
クエリ構文	APER?	
クエリ応答	{SLOW,M	IED,FAST}, <avg value=""></avg>
例	送信>	APER? <nl></nl>
	応答>	slow,0 <nl></nl>

11.9.1 APERture:RATE?

APERture:RATE?クエリは、現在の測定レート(積分時間)を返します。

クエリ構文	APER:RATE?	
クエリ応答	SLOW	
例	送信> APER:RATE? <nl></nl>	
	応答> slow <nl></nl>	

11.9.2 APERture: AVG?

APERture:AVG?クエリは、平均回数を返します。

クエリ構文	APER:AVG?
クエリ応答	<nr1></nr1>
	整数(0 から256)

例	SEND>	APER:AVG? <nl></nl>
	RET>	0 <nl></nl>

11.10 FETCh サブシステム

FETChサブシステムコマンドグループは、トリガにより開始した測定で取 得した測定データを呼び出すセンサのみのコマンドで出力バッファにデー タをセットします。

図 11-7 FETCh サブシステムコマンドの階層

11.10.1 FETCh?

FETCh?クエリコマンドは、出力バッファにプライマリ、セカンダリパラメータとコンパレータの結果の最新の測定データをセットします。

クエリ構文	FETCh?	
クエリ応答	<nr3:primary value="">,<nr3:secondary< th=""></nr3:secondary<></nr3:primary>	
	value>, <comparator result=""></comparator>	
例	送信> FETC? <nl></nl>	
	応答> +2.61788e-11,+5.45442e-01,BIN1,AUX-	
	OK,OK <nl></nl>	
	応答> +1.23434e+05,OUT ,NG <nl></nl>	
	//DCR と Comp on.	

[LIST MEAS]ページビューのとき、FETCh?クエリは以下のようになります。

FETCh?クエリは、出力バッファヘプライマリとセカンダリパラメータとコン パレータ結果の最新のLIST測定データをセットします。

クエリ構文	FETCh?
クエリ応答	<nr3:primary value="">,<nr3:secondary value="">,</nr3:secondary></nr3:primary>
	<cmp result=""></cmp>

例	送信>	FETC? <nl></nl>
	受信>	-2 98524e-12 +3 27673e+00 L <nl></nl>
		-1.00000 + 20 - 1.00000 + 20 - 1.00000 + 20 - 1.000000 + 20 - 1.000000 + 20 - 1.000000 + 20 - 1.0000000 + 20 - 1.0000000 + 20 - 1.0000000000000000000000000000000000
	'又'16/	-1.00000e+20,-1.00000e+20,- <nl></nl>
		//STEPは、OFF

11.10.2 FETCh:IMPedance?

FETCh:IMPedance?クエリは、出力バッファヘプライマリパラメータ、セカン ダリパラメータ、モニタ1とモニタ2結果の最新測定データをセットします。

•••••	
クエリ構文	FETCh?
クエリ応答	<nr3:primary value="">,<nr3:secondary value="">,</nr3:secondary></nr3:primary>
	<nr3:monitor1>,<nr3:monitor2>,<comparator result=""></comparator></nr3:monitor2></nr3:monitor1>
例	送信> FETC? <nl></nl>
	応答> +2.61788e-11,+5.45442e-01,+3.88651e+05,
	+0.00000e+00,BIN1,AUX-OK, OK <nl></nl>
	応答> +1.23434e+05,BIN1,OK <nl></nl>
	//DCRとCompをon.

11.10.3 FETCh:MAIN?

FETCh:MAIN?クエリコマンドは、出力バッファへプライマリパラメータ、セカンダリパラメータ結果の最新測定データをセットします。

クエリ構文	FETCh:MAIN?	
クエリ応答	<nr3:primary value="">,<nr3:secondary value=""></nr3:secondary></nr3:primary>	
例	送信>	FETC:MAIN? <nl></nl>
	応答>	+2.02100e-11,+1.64422e-01 <nl>//LCR</nl>
		//LCR プライマリとセカンダリ
	応答>	+1.23434e+05 <nl></nl>
		//DCR

11.10.4 FETCh:MONitor1? /2?

FETCh:MONitor1?とFETCh:MONitor2?は、出力バッファにmoniter1と moniter2パラメータの最新測定データをセットします。

クエリ構文	FETCh:MONitor1? と FETCh:MONitor2?
クエリ構文	<nr3: 2="" moniter1="" value=""></nr3:>
例	送信> FETC:MON1? <nl></nl>
	応答> +3.88651e+05 <nl></nl>
	応答> +0.00000e+00 <nl></nl>

//0: monitor 1がOFF

11.10.5 FETCh:MONitor?

FETCh:MONitor?は、出力バッファにmoniter1とmoniter2パラメータの最新 測定データをセットします。

クエリ構文	FETCh:MONitor?	
クエリ応答	<nr3: 2="" moniter1="" value=""></nr3:>	
例	送信> FETC:MON? <nl></nl>	
	応答> +3.88651e+05,+0.00000e+00 <nl></nl>	
	(0: 2はOFF)	

11.10.6 FETCh:LIST?

FETCh:LIST?クエリコマンドは、出力バッファヘプライマリパラメータ、セカンダリパラメータとコンパレータ結果の最新測定データをセットします。

クエリ構文	FETCh:LIST?
クエリ応答	<spot no="">,<nr3:primary value="">,<nr3:secondary< td=""></nr3:secondary<></nr3:primary></spot>
	value>, <cmp result=""> // spot no:01-10</cmp>
例	送信> FETC:LIST? <nl></nl>
	受信> 01,−2.98524e-
	12,+3.27673e+00,L,02,+7.11030e-12,+3.48450e-
	01,P,03,+7.11322e-12,+5.14944e-02,H,04,-
	1.00000e+20,-1.00000e+20,-,05,-1.00000e+20,-
	1.00000e+20,-,06,-1.00000e+20,-1.00000e+20,-,07,-
	1.00000e+20,-1.00000e+20,-,08,-1.00000e+20,-
	1.00000e+20,-,09,-1.00000e+20,-1.00000e+20,-,10,-
	1.00000e+20,-1.00000e+20,- <nl></nl>
	(-1.00000e+20: STEPはOFF)

クエリ構文	FETCh:LIST? <spot no=""></spot>	
クエリ応答	<spot no="">,<nr3:primary value="">,<nr3:secondary< th=""></nr3:secondary<></nr3:primary></spot>	
	value>, <cmp result=""></cmp>	
例	送信> FETC:LIST?2 <nl></nl>	
	受信> 02,+7.11030e-12,+3.48450e-01,P <nl></nl>	
	(-1.00000e+20: STEP(\$CFF)	

11.11 COMParator サブシステム

COMParatorサブシステムコマンドグループは、ON / OFF設定、リミットモードおよびリミット値を含むコンパレータ機能を設定します。

図 11-8

COMParator サブシステムコマンドの階層

11.11.1 COMParator:STATe

COMParator:STATeコマンドは、コンパレータ機能のオンまたはオフを設定します。

コマンド構文	COMParator:STA	Te {ON,OFF,1,0}
パラメータ	ON または 1	コンパレータをONにします。
	OFFまたは 0	コンパレータをOFFにします。
例	SEND> COMP:ST	AT OFF <nl></nl>
クエリ構文	COMParator:STA	.Te?
クエリ応答	{on,off}	
例	送信> COMP:	STAT? <nl></nl>
	応答> on <nl></nl>	

11.11.2 COMParator:MODE

:COMParator:MODEコマンドは、コンパレータ機能のリミットモードを設定します。

コマンド構文	COMParator:MODE {ABS,PER,SEQ}	
パラメータ	{ABS,PER,SEQ}(t:	
	ABS	Absolute tolerance mode
	PER	Percent tolerance mode
	SEQ	Sequential mode
例	SEND> (COMP:MODE PER <nl></nl>
クエリ構文	COMPar	ator:MODE?
クエリ応答	{abs,per,	seq}
例	送信>	COMP:MODE? <nl></nl>
	応答>	abs <nl></nl>

11.11.3 COMParator:AUX

COMParator:AUX コマンドは、パラメータの補助BIN機能のONまたはOFF に設定します。

コマンド構文	COMParator:AUX {ON,OFF,1,0}		
パラメータ	{ON,OFF,1,0}/は:		
	ON または 1	AUX BINをONに設定します。	
	OFF または 0	AUX BINをOFFに設定します。	
例	送信> COMP:AUX	COFF <nl></nl>	
クエリ構文	COMParator:AUX	?	
クエリ応答	{on,off}		

例	送信>	COMP:AUX? <nl></nl>
	応答>	on <nl></nl>

11.11.4 COMParator:BINS

COMParator:BINSコマンドは、全bin数を設定します。

コマンド構文	COMParator:BINS <value></value>		
パラメータ	{value} は::		
	NR1 (1 から 9)		
例	SEND> COMP:BINS 3 <nl></nl>		
クエリ構文	COMParator:BINS?		
クエリ応答	<nr1> (1 から 9)</nr1>		
例	送信> COMP:BINS? <nl></nl>		
	応答> 3 <nl></nl>		

11.11.5 COMParator:TOLerance:NOMinal

COMParator:TOLerance:NOMinalコマンドは、コンパレータ機能の tolerance modeのnominal値を設定します。

コマンド構文	COMParator:TOLerance:NOMinal <value></value>		
パラメータ	<value>は:</value>		
	NR1, NR2 またはNR3		
	このコマンドは、接尾記号を使用できます。単位記号		
	F/Ω/Hは、使用しません。		
例	送信> COMP:TOL:NOM 100N <nl></nl>		
	送信> COMP:TOL:NOM 1E-6 <nl></nl>		
クエリ構文	COMParator:TOLerance:NOMinal?		
クエリ応答	<nr3></nr3>		
例	送信> COMP:TOL:NOM? <nl></nl>		
	応答> 1.00000e-06 <nl></nl>		

11.11.6 COMParator:TOLerance:BIN

COMParator:TOLerance:BIN コマンドは、コンパレータ許容値モードでの 各BINのハイ/ローリミット値を設定します。

コマンド構文	COMParator:TOLerance:BIN <n>,<low limit="">,<high< th=""></high<></low></n>		
	limit>		
パラメータ	<n>,<low limit="">,<high limit="">は:</high></low></n>		
	n NR1 (1から9): Bin番号		
	low limit NR1,NR2またはNR3: low limit value		

	high limit NR1,NR2またはNR3:high limit value		
例	送信> COMP:TOL:BIN 1,100P,200P <nl></nl>		
	送信> COMP:TOL:BIN 2,200E-6,300E-6 <nl></nl>		
クエリ構文	COMParator:TOLerance:BIN? <n></n>		
パラメータ	<n>1:</n>		
	NR1 (1 から9): Bin番号		
クエリ応答	<nr3:low limit="">,<nr3:high limit=""></nr3:high></nr3:low>		
例	送信> COMP:TOL:BIN? 2 <nl></nl>		
	応答> 1.00000e-06,2.00000E-6 <nl></nl>		

11.11.7 COMParator:SLIM

COMParator:SLIM またはCOMParator:secondary コマンドは、セカンダリ パラメータのロー/ハイリミット値を設定します。

コマンド構文	COMParator:SLIM <low value="">,<high value=""></high></low>		
	COMParator:seco	ndary <low value="">,<high value=""></high></low>	
パラメータ	<low value="">,<high value="">は:</high></low>		
	<low value=""></low>	NR1,NR2 or NR3:ローリミット値	
	<high value=""></high>	NR1,NR2 or NR3:ハイリミット値	
	末尾記号を使用で	きます。	
例	SEND> COMP:SLI	M 0.0001,0.0010 <nl></nl>	
クエリ構文	COMParator:SLIM	?	
	COMParator:seco	ndary?	
クエリ応答	<nr3:low limit="">,<n< th=""><th>IR3:high limit></th></n<></nr3:low>	IR3:high limit>	
例	送信> COMP:S	LIM? <nl></nl>	
	受信〉 1.000006	e-04,1.00000e-03 <nl></nl>	

11.11.8 COMParator:BEEP

:COMParator:BEEP コマンドはコンパレータ機能のブザーモードを設定します。

コマンド構文	COMParator:BEEP {OFF,PASS,FAIL}	
パラメータ	OFF	ブザー音をOFFにします。
	PASS	テストがPASS (BIN1~BIN9)の時、ブザー
	音がしま	す。
	FAIL	テストがFAIL (OUT)の時、ブザー音がしま
	す。	
例	送信>	COMP:BEEP PASS <nl></nl>
クエリ構文	COMPar	ator:BEEP?

クエリ応答	{OFF,PASS,FAIL}	
例	送信>	COMP:BEEP? <nl></nl>
	応答>	OFF <nl></nl>

11.11.9 COMParator:OPEN

:COMParator:OPEN コマンドは、メインパラメータのオープン条件を選択します。

コマンド構文	COMParator:OPEN {OFF,2,5,10,20,50}
パラメータ	OFF ブザー音をオフにします。
	2,5,10,20,50 The percent range value
例	SEND> COMP:OPEN 2 <nl></nl>
クエリ構文	COMParator:OPEN?
クエリ応答	{OFF,2,5,10,20,50}
例	送信> COMP:OPEN? <nl></nl>
	応答〉 OFF <nl></nl>

11.12 LIST サブシステム

LISTまたはSWEEPサブシステムのコマンドグループは、リミット機能のためのリミット値と掃引ポイント設定を含むリスト掃引測定機能を設定します。

図 11-9

LIST サブシステムコマンドの階層

11.12.1 LIST:PARAmeter

LIST:PARAmeter コマンドは、リスト掃引のパラメータを設定します。

コマンド構文	LIST:PARAmeter {FREQ,VOLT,CURR}		
パラメータ	{FREQ,LEVEL}(t:		
	FREQ	掃引パラメータの周波数を設定します。	
	VOLT	掃引パラメータの電圧レベルを設定しま	

	す。 CURR 掃引パラメータの電流レベルを設定しま す。		
例	SEND> LIST:PARA VOLT <nl></nl>		
クエリ構文	LIST:PARAmeter?		
クエリ応答	{FREQ,VOLT,CURR}		
例	送信> LIST:PARA? <nl></nl>		
	応答〉 FREQ <nl></nl>		

11.12.2 LIST:STAT

LIST:STATコマンドは、特定の掃引ポイントをオンまたはオフにします。

コマンド構文	LIST:STAT <n>,{ON,OFF,1,0}</n>		
パラメータ	<n>は:</n>		
	n NR1(1 から10)はリスト掃引のポイント		
	ONまたは1 ポイントをONします。		
	OFFまたは0 ポイントをOFFします。		
例	SEND> LIST:STAT 1,ON <nl></nl>		
クエリ構文	LIST:STAT? <n></n>		
パラメータ	<n> は:</n>		
	n NR1(1 から10): リスト掃引のポイント番号		
クエリ応答	{on,off}		
例	送信> LIST:STAT? 1 <nl></nl>		
	応答> on <nl></nl>		

11.12.3 LIST: BAND

LIST:BAND コマンドは、リスト掃引ポイント値、リミットモードとハイ/ローリ ミット値を設定します。

コマンド構文	LIST:BAND <n>,<point value="">,{A,B,OFF},<low>,</low></point></n>
	<high></high>
パラメータ	<n>,<point value="">,{A,B,OFF},<low>,<high>は:</high></low></point></n>
	n NR1(1から10): リスト掃引ポイント番号
	<point value=""> 掃引ポイント値(周波数値または</point>
	テスト信号レベル値)
	A リミットパラメータとしてプライマリーパラメータを
	使用します。
	B リミットパラメータとしてセカンダリパラメータを
	使用します。

	OFF リスト掃引のコンパレータ機能をオフにします。 <low> NR1 NR2またはNR3・ローリミット値</low>
	<high> NR1,NR2またはNR3:ハイリミット値</high>
	注意:接尾記号は、使用可能です。接尾単位は、使
	用でさません。
例	送信> LIST:BAND 1,1k,A,1n,2n <nl></nl>
	送信> LIST:BAND 2,10k,A,1E-9,2E-9 <nl></nl>
クエリ構文	LIST:BAND? <n></n>
パラメータ	<n>1:</n>
	n NR1(1から10):リスト掃引のポイント
クエリ応答	{on,off}, <point value="">,{A,B,-},<nr3:low>,<nr4:high></nr4:high></nr3:low></point>
例	送信> LIST:BAND? 1 <nl></nl>
	応答> on,1.00000e+03,A,1.000000E-9,2.000000E-
	9 <nl></nl>

11.13 CORRection サブシステム

CORRection サブコマンドグループは、オープン、ショートとロード補正設 定wp含む補正機能を設定します。

CORRection サブシステムは、[LIST MEAS] ページでは動作しません。

図 11-10

CORRection サブシステムコマンドの階層

11.13.1 CORRection:OPEN

CORRection:OPENコマンドは、すべてのプリセットOPEN補正データ測定 ポイントを実行します。

コマンド構文	CORRection:OPEN	
例	SEND> CORRection:OPEN <nl></nl>	

11.13.2 CORRection:OPEN:STATe

CORRection:OPEN:STATe コマンドは、オープン補正機能のオンまたはオフを設定します。

コマンド構文	CORRection:OPEN:STATe {ON,OFF,1,0}		
パラメータ	{ON,OFF,1,0} は:		
	ON, 1	機能をオンします。	
	OFF,0	機能をオフします。	
例	送信>	CORR:OPEN:STATe ON <nl></nl>	
	受信>	open <nl></nl>	
クエリ構文	CORRec	tion:OPEN:STATe?	
クエリ応答	{on,off}		
例	送信>	CORR:OPEN:STATe? <nl></nl>	
	受信>	on <nl></nl>	

11.13.3 CORRection:SHORt

CORRection:SHORt コマンドは、すべてのプリセットSHORT 補正データ 測定ポイントを実行します。

コマンド構文	CORRection:SHORt	
例	送信>	CORRection:SHOR <nl></nl>
	受信>	short <nl></nl>

11.13.4 CORRection:SHORt:STATe

CORRection:SHORt:STATe コマンドは、ショート補正機能のオンまたはオフを設定します。

コマンド構文	CORRection:SHORt:STATe {ON,OFF,1,0}		
パラメータ	{ON,OFF,1,0} は:		
	ON, 1 機能をオンします。		
	OFF,0 機能をオフします。		
例	送信> CORR:SHOR:STATe ON <nl></nl>		
クエリ構文	CORRection:SHOR:STATe?		

クエリ応答	{on,off}	
例	送信>	CORR:SHOR:STATe? <nl></nl>
	受信>	on <nl></nl>

11.13.5 CORRection:SPOT:FREQuency

CORRection:SPOT:FREQuencyコマンドは、指定された周波数ポイント補 正用の周波数ポイントを設定します。

コマンド構文	CORRection:SPOT:FREQuendy <value></value>		
パラメータ	<value>は:</value>		
	value NR1,NR2 or NR3: 周波数		
	接尾記号は、使用できます。		
	接尾単位は、使用しません。		
例	送信> CORR:SPOT:FREQ 1k <nl></nl>		
	送信> CORR:SPOT:FREQ 10k <nl></nl>		
クエリ構文	CORRection:SPOT:FREQuency?		
クエリ応答	<nr3></nr3>		
例	送信> CORR:SPOT:FREQ? <nl></nl>		
	受信> 1.000000e+03 <nl></nl>		

11.13.6 CORRection: SPOT: OPEN

このコマンドは、指定されたスポット周波数補正でOPEN補正データ測定 を実行します。

コマンド構文	CORRection:SPOT:OPEN	
例	送信>	CORR:SPOT:OPEN <nl></nl>

11.13.7 CORRection:SPOT:SHORt

このコマンドは、指定されたスポット周波数補正でSHORT補正データ測定を実行します。.

コマンド構文	CORRection:SPOT:SHORt		
例	SEND> CORR:SPOT:SHOR <nl></nl>		

11.14 TRIGger サブシステム

TRIGgerサブシステムコマンドグループは、トリガモードを設定と測定また は掃引測定を有効にするために使用されます。

図 11-11

TRIGgerサブシステムコマンドの階層

11.14.1 TRIGger[:IMMediate]

TRIGger:IMMediateコマンドは、トリガ状態にかかわらず測定または 掃引測定を実行します。

コマンド構文	TRIGger[:IMMediate]	
例	送信> TRIG <nl></nl>	
▲ 注意	このコマンドは、BUSトリガモードでのみ使用できま す。	

11.14.2 TRIGger:SOURce

TRIGger:SOURce コマンドは、トリガモードを設定します。

コマンド構文	TRIGger:SOURce {INT,MAN,EXT,BUS}		
パラメータ	{INT,MAN,EXT,BUS}(t:		
	INT 内部トリガモード		
	MAN 手動トリガモード		
	EXT 外部トリガモード		
	BUS BUSトリガモード		
例	送信> TRIG:SOUR BUS <nl></nl>		
クエリ構文	TRIGger:SOURce?		
クエリ応答	{INT,MAN,EXT,BUS}		
例	送信> TRIG:SOUR? <nl></nl>		
	受信> INT <nl></nl>		

11.14.3 TRIGger:DELAY

TRIGger:DELAYコマンドは、トリガ遅延時間を設定します。

コマンド構文	TRIGger:DELAY { <float>,min,max}</float>		
	TRIGger:DLY { <float>,min,max}</float>		
パラメータ	float 値は1ms から 60.00s		
	min: =0ms		
	max: =60.000s		
例	送信> TRIG:DLY 1 <nl></nl>		
	//トリガ遅延時間を1.000sに設定		
クエリ構文	TRIGger:DELAY?		
	TRIGger:DLY?		
クエリ応答	{0.000s~60.00s}		
例	送信> TRIG:DLY? <nl></nl>		
	受信> 1.000s <nl></nl>		

11.15 BIAS サブシステム

The BIASサブシステムコマンドグループは、DC BIASのオン/オフ設定と DCバイアス電圧値を設定します。

図 11-12

BIAS サブシステムコマンドの階層

11.15.1 BIAS

コマンド構文	BIAS {OFF,<-2.5 to +2.5V,min,max}		
例	送信>	BIAS OFF <nl></nl>	
	送信>	BIAS 2 <nl></nl>	
クエリ構文	BIAS?		
クエリ応答	<-2.50V~+2.50V>		
例	送信>	BIAS? <nl></nl>	
	応答>	OFF <nl></nl>	

11.16 ファイル サブシステム

FILE サブシステムコマンドグループは、ファイル操作を実行します。 図 11-13 FILE サブシステムコマンドの階層

11.16.1 FILE?

FILE? クエリは、システムで使用されているファイル番号を問い合わせます。

クエリ構文	FILE?		
クエリ応答	<nr1(0 th="" ·<=""><th>~ 9):</th><th>ファイル番号></th></nr1(0>	~ 9):	ファイル番号>
例	送信>	FILE? <n< th=""><th>></th></n<>	>
	応答>	0 <nl></nl>	

11.16.2 FILE:SAVE

FILE:SAVE コマンドは、現在使用しているファイルへ設定を保存します。

コマンド構文	FILE:SAVE	
例	SEND> FILE:SAVE <nl></nl>	

FILE:SAVE <n> コマンドは、指定したファイルへ設定を保存します。

コマンド構文	FILE:SAVE <file no.=""></file>		
パラメータ	<file no.=""> は:</file>		
	NR1 (0 ~ 9)		
例	SEND> FILE:SAVE 0 <nl></nl>		

11.16.3 FILE:LOAD

FILE:LOAD コマンドは、現在使用しているファイルから設定を呼出ます。

コマンド	FILE:LOAD		
例	送信> FILE:LOAD <nl></nl>		

FILE:LOAD <n> コマンドは、指定したファイルから設定を呼び出します。

コマンド構文	FILE:LOAD <file no.=""></file>	
パラメータ	<file no.="">は:</file>	
	NR1 (0 ~ 9)	
例	送信> FILE:LOAD 0 <nl></nl>	

11.16.4 FILE:DELete

FILE:DELeteコマンドは、指定した番号のファイルを削除します。

コマンド構文	FILE:DELete <file no.=""></file>		
パラメータ	<file no.="">は:</file>		
	NR1 (0 ~ 9)		
例	送信> FILE:DELete <nl></nl>		

11.17 ERRor サブシステム

11.17.1 ERRor?

ERRor? クエリは、最新のエラー情報を返します。

クエリ構文	ERRor?		
クエリ応答	エラー文字列		
例	送信>	ERR? <nl></nl>	
	受信>	no error. <nl></nl>	

11.18 SYSTEM サブシステム

11.18.1 SYSTem:SHAKehand

SYSTem:SHAKehand コマンドは、送信コマンドのフィードバックをオンまたはオフにします。

コマンド構文	SYSTem	:SHAKehand {on,off}
例	送信>	SYST:SHAK ON <nl></nl>
クエリ構文	SYSTem	:SHAKehand?
クエリ応答	{on,off}	
例	送信>	SYST:SHAK? <nl></nl>
	受信>	OFF <nl></nl>

11.18.2 SYSTem:CODE

SYSTem:CODE コマンドは、各送信コマンドに対するエラーコードを返します。

コマンド構文	SYSTem	:CODE {on,off}
例	SEND>	SYST:CODE ON <nl></nl>
クエリ構文	SYSTem	n:CODE?
クエリ応答	{on,off}	
例	送信>	SYST:CODE? <nl></nl>
	受信>	OFF <nl></nl>

11.18.3 SYSTem:KEYLock

SYSTem:KEYLockコマンドは、パネルキーのロックを解除します。

コマンド構文	SYST:KEYLOCK OFF
	または UNLOCK(UNLK)
例	送信> UNLOCK <nl></nl>

11.18.4 SYSTem:RESult

SYSTem:RESult コマンドは、テスト結果の送信モードを選択します。

コマンド構文	SYSTem:RESult {fetch,auto}				
例	送信>	SYST:RES fetch <nl></nl>			
パラメータ	fetch	"fetch?"コマンドでテスト結果を返します。			
	auto	トリガでテスト結果を返します。			
クエリ構文	SYSTem	n:RESult?			
クエリ応答	{FETCH,	AUTO}			
例	送信>	SYST:RES? <nl></nl>			
	受信>	fetch <nl></nl>			

11.19 コモンコマンド

11.19.1 ***IDN**?

*IDN? クエリは、機器IDを問い合わせます。

クエリ構文	IDN? または *IDN?
クエリ応答	<model>,<firmware>,<serial no.="">,<manufacturer></manufacturer></serial></firmware></model>

11.19.2 *****TRG

The *TRG コマンド(トリガコマンド)はGroup Execute Trigger コマンドと同じ機能を実行します。

コマンド構文	*TRG
クエリ応答	<primary value="">,<secondary value="">,<comparator< th=""></comparator<></secondary></primary>
	result>
例	送信> *TRG
	受信> +5.56675e-11,+7.25470e-01,OUT
$\mathbf{\Lambda}$	このコマンドは、BUSトリガモードで使用可能です。
∠ ♪ 注意	*TRG = TRIG;:FETC?

11.19.3 *****SAV

*SAV = FILE:SAVE

*SAV コマンドは、現在使用しているファイルへ設定を保存します。

コマンド構文	*SAV	
例	送信>	*SAV <nl></nl>

11.19.4 *RCL

*RCL = FILE:LOAD

*RCLコマンドは、現在使用しているファイルから設定を呼び出します。

コマンド構文	*RCL	
例	送信>	*RCL <nl></nl>

12. 仕様

この章では、LCR-6000シリーズの仕様と補足特性および外形寸法について説明します。

- 仕様
- 寸法

確度は、以下のすべての条件を満たした状態で定義 されます。

- 温度: 23℃±5℃
- 湿度: <70% R.H.
- ゼロ補正: 30分以上エージング後、オープ ン/ショート補正

1年毎の校正サイクル

基本確度: 0.05%(Slow/Med)、0.1%(Fast)

12.1 一般仕様

画面: 3.5インチRGBカラーTFT液晶、 (320x240)
テスト機能: Cs-Rs, Cs-D, Cp-Rp, Cp-D, Lp-Rp, Lp-Q, Ls-Rs, Ls-Q, Rs-Q, Rp-Q, R-X, DCR, Z-θr, |Z|-θd, |Z|-D, |Z|-Q
モニタパラメータ Z, D, Q, Vac, Iac, Δ, Δ%, θr, θd, R, X, G, B, |Y| (の内2個の パラメータ)
測定速度: 40 回/s、10回/s、3回/s

テスト周波数 LCR-6300:10Hz~300kHz LCR-6200:10Hz~200kHz LCR-6100:10Hz~100kHz LCR-6020:10Hz~20kHz LCR-6002:10Hz~2kHz

周波数レンジと分解能

周波数レンジ(F)	分解能
$10.00Hz \leq F \leq 99.99Hz$	0.01Hz
$100.0Hz \leq F \leq 999.9Hz$	0.1Hz
1.000 kHz \leq F \leq 9.999kHz	1Hz
10.00 kHz \leq F \leq 99.99kHz	10Hz
100.0 kHz \leq F \leq 300.0kHz	100Hz

周波数確度:0.01%、分解能:4桁

LCR-6300の Open/Short trimming 周波数ポイント一覧[単位:Hz]

10	12	15	20	25	30	40	50	60	80
100	120	150	200	250	300	400	500	600	800
1k	1.2k	1.5k	2k	2.5k	3k	4k	5k	6k	8k
10k	12k	15k	20k	25k	30k	40k	50k	60k	80k
100k	120k	150k	200k	250k	300k				

LCR-6200の Open/Short trimming 周波数ポイント一覧[単位:Hz]

10	12	15	20	25	30	40	50	60	80
100	120	150	200	250	300	400	500	600	800
1k	1.2k	1.5k	2k	2.5k	3k	4k	5k	6k	8k
10k	12k	15k	20k	25k	30k	40k	50k	60k	80k
100k	120k	150k	200k						

LCR-6100の Open/Short trimming 周波数ポイント一覧[単位:Hz]

		-		<u> </u>					
10	12	15	20	25	30	40	50	60	80
100	120	150	200	250	300	400	500	600	800
1k	1.2k	1.5k	2k	2.5k	3k	4k	5k	6k	8k
10k	12k	15k	20k	25k	30k	40k	50k	60k	80k
100k									

LCR-6020	つの	Open/S	hort tri	mming	周波数	ポイント	一覧[単	〔位:Hz]	

10	12	15	20	25	30	40	50	60	80
100	120	150	200	250	300	400	500	600	800
1k	1.2k	1.5k	2k	2.5k	3k	4k	5k	6k	8k
10k	12k	15k	20k						

LCR-6002 の Open/Short trimming 周波数ポイント一覧[単位:Hz]

10	12	15	20	25	30	40	50	60	80
100	120	150	200	250	300	400	500	600	800
1k	1.2k	1.5k	2k						

表示範囲

パラメータ	表示範囲
L	0.00001µH∼99999.99H
С	0.00001pF~9999.99mF
R, X, Z	0.00001 Ω ~99.9999M Ω
G, B, Y	0.01nS~999.999S
D	0.00001~9.99999
Q	0.00001~99999.9
heta d	-179.999° ~179.999°
θr	-3.14159~3.14159
DCR	0.00001 Ω ~99.9999M Ω
Δ%	-999999%~ 999999%
テスト信号レベル	10.00mV~2.00V (±10%)

(確度):	$CV: 10.00 \text{mV} \sim 2.00 \text{V} (\pm 10.00 \text{mV})$			
	100.0μA~20.00mA(±10%) CC:100.0μA~20.00mA(±6%) (@2VMax)			
DCRテスト信号 レベル	±1V(2Vpp)、矩形波、 3Hz up, 0.033A(最大)、出力インピ ーダンス固定 30Ω			
DCバイアス: 内部:	±2.5V (確度:0.5%+0.005V) 0.01V≦V≦2.50V、0.01Vステップ -2.50V≦V≦-0.01V、0.01Vステップ			

リスト測定:	10ステップ (周波数/電圧/電流)
出カインピーダンス:	30Ω、50Ω、100Ω
レンジ:	Auto、Hold、Nominalレンジ トータル9レンジ. 等価回路 : SerialとParallel
OPEN/SHORT テスト:	OPEN/SHORT ゼロ補正 (ALL,SPOT)
ファイル:	内蔵メモリ:設定ファイル10ファイル 外部USB ディスク:設定ファイル10 個、データログファイル(CSV形 式)9999ファイル、画像ファイル(bmp 形式)999ファイル
ブザー機能	OFF/PASS/FAIL、Key ON
トリガモード:	内部、手動、外部とBUSトリガ
インターフェース	ハンドラインターフェース RS-232Cインターフェース
仕様温度:	温度∶23℃±5℃、 相対湿度: <70%RH
動作温度	温度:0~50℃, 相対湿度: <70%RH 使用環境:屋内のみ 高度< 2000m
保存条件:	温度:-10~70℃、 相対湿度:< 80%RH
電源:	AC 100V∼240V、50Hz~60Hz
ヒューズタイプ:	3A Slow-Blow
消費電力:	最大30W
質量:	約3kg

環境:
12.2 寸法

図 12-1 寸法

この章では、本器の確度、測定許容範囲と性能をテストするための方法について説明します。

- 確度
- 確度を決定するファクタ

本器の確度は、測定の安定性、温度変動、回路の線形性と測定の再現性の許容範囲に影響されます。

本器の確度検証は、以下のような状況で行われる必要があります:

エージング時間: 30分.以上 エージング後、正しいオープン/ショート校正の実行 オートレンジモードに設定

13.1 確度

- 13.1.1 L, C, R Z 測定確度
 - L、C、R、 |Z| の確度は次式で定義されるAeと同等で す:

Ae = $\pm \pm [A \times Ar + (Ka + Kb + Kf) \times 100 + K_L] \times Kc$ [%]

- A: 基本測定確度
- Ar: 基本確度補正係数
- Ka: インピーダンス係数 a
- Kb: インピーダンス係数b
- Kc: 温度係数
- Kf: オープン/ショートトリミング係数
- KL: テストリード長係数

LとCの確度を計算する方法は、Dx(D測定値)≦0.1か どうかに依存します。

Rの確度を計算する方法は、Qx(Q測定値)が≦0.1で あるかどうかに依存します。

Dx(D測定値) \geq 0.1のとき、LとCの確度係数Aelこ $\sqrt{1+D_x^2}$ を掛けます。

 $Qx \ge 0.1$ 、Rの確度係数Aelc $\sqrt{1+Q_x^2}$ を掛けます。

13.1.2 Dの確度

Dの確度は、次式で定義されています:

D_e = ±
$$\frac{A_e}{100}$$
 (Dx≦0.1のとき)

Dxが>1の時、Deに(1+Dx)を掛けます。

13.1.3 Qの確度

Qの確度は、次式で定義されています:

Qe =
$$\pm \frac{Q_x \times D_e}{1 \mu Q_x \times D_e}$$
(Qx×De<1のとき)

ここでは:

Qx は測定されたQ値:

De は、Dの確度:

13.1.4 0の確度

θの確度は、次式で定義されています:

$$\theta_e = \frac{180}{\pi} \times \frac{Ae}{100} \qquad [\text{deg}]$$

13.1.5 Rp の確度

Dx (測定したDの値)≤0.1のとき、Rpの確度は次式のように定義されます:

$$\mathsf{Rp} = \pm \frac{R_{px} \times D_e}{D_x \, \mu \, D_e} \qquad [\Omega]$$

ここでは:

Rpxは、測定されたRp値 [Ω].

Dxは、測定されたD値 [F].

Deは、Dの確度

1316 Rs の確度

Dx(測定したD値)≦0.1のとき

Rsの確度は次のように定義されます:

Rse =
$$Xx \times De$$
 [Ω]

$$X_{x} = 2 \pi fL_{x} = \frac{1}{2\pi fC_{x}}$$

ここでは:

Xx は、測定したX値[Ω].

Cx は、測定した C値[F].

Lx は、測定したL 値[H].

De は Dの確度

Fは測定周波数

13.2 測定確度に影響を与える補正係数

以下に基本確度を決定する方法が示します。A:

A = 0.05:

測定信号が0.4Vrms≤V_s≤1.2Vrms

測定スピードがSlowまたはMedium.

のとき

A=0.1:

測定信号が0.4V_{rms} ≤V_s ≤1.2V_{rms} 測定スピードがFast

のとき

テスト信号Vsが<0.4VrmsまたはVs>1.2Vrmsであると きの基本確度Aは、以下の説明に従って計算する必 要があります。

現在使用している測定スピードに対する基本確度Aを 求め、次に現在使用してテスト信号の振幅に応じて、 補正係数Arを求めます。(図 13-2を参照してください)

実際の基本確度Aを求めるためにArをAに掛けます。 その時のVsはテスト信号の振幅を表します。

もし、求めるスポットの確度が線上の右になった(例えば、0.25と0.65間の水平太線)場合、求めるスポットの 基本確度は小さい値0.25を使用します。

図 13-2 基本精度補正係数Ar用テーブル

表 13-1	インピーダンス神	補正係数	
測定スピード	測定周波数	Ka	Kb
Slow Medium	f _m <100Hz	$(\frac{1\times10^{-3}}{ Z_m })(1+\frac{200}{V_s})(1+\sqrt{\frac{100}{f_m}})$	$ Z_m (1 \times 10^{-9})(1 + \frac{70}{V_s})(1 + \sqrt{\frac{100}{f_m}})$
	100Hz≤f _m ≤100kHz	$(\frac{1\times10^{-3}}{ Z_m })(1+\frac{200}{V_s})$	$ Z_m (1\times 10^{-9})(1+\frac{70}{V_s})$
	f _m >100kHz	$(\frac{1\times10^{-3}}{ Z_m })(2+\frac{200}{V_s})$	$ Z_m (3\times 10^{-9})(1+\frac{70}{V_s})$
Fast	f _m <100Hz	$(\frac{2.5 \times 10^{-3}}{ Z_m })(1+\frac{400}{V_s})(1+\sqrt{\frac{100}{f_m}})$	$ Z_m (2 \times 10^{-9})(1 + \frac{100}{V_s})(1 + \sqrt{\frac{100}{f_m}})$
	100Hz≤f _m ≤100kHz	$(\frac{2.5\times10^{-3}}{ Z_m })(1+\frac{400}{V_s})$	$ Z_m (2\times 10^{-9})(1+\frac{100}{V_s}) $
	f _m >100kHz	$(\frac{2.5\times10^{-3}}{ Z_m })(2+\frac{400}{V_s})$	$ Z_m (6\times 10^{-9})(1+\frac{100}{V_s}) $

fm: 測定周波数 [Hz]

Zm: DUTのインピーダンス [Ω]

Vs: テスト信号の振幅 [mVrms]

インピーダンスが500Ω未満である場合には、Kaを使用します。Kbは、無視することができます。

インピーダンスが500Ωよりも大きい場合には、Ka、Kbを無視することができます。

表 13-2	温度補正係数 Kc					
温度 (°C)	Ę	5 8	3 1	8 2	.8 3	8
Кс	6	4	2	1	2	4

表 13-3 オープン/ショートトリミング補間Kfの補正係数

テスト周波数	Kf
テスト周波数がオープン/ショートトリ ミング周波数と同じ場合	0
テスト周波数がオープン/ショートトリ ミング周波数と異なる場合	0.0003

各モデルのオープン/ショートトリミング周波数ポイントについては、12.1-般仕様のセクションを参照してください。

表 13-4 テストリートのケーフル長に関する補止係

ニュレ伝日の拒姫	テストリードのケーブル長			
ナスト信ちの振幅 	0m	1m	2m	
\leq 1.5Vrms	0	$2.5 \times 10^{-4} (1+0.05 f_m)$	5×10 ⁻⁴ (1+0.05f _m)	
>1.5Vrms	0	$2.5 \times 10^{-3} (1 + 0.016 f_m)$	$5 \times 10^{-3} (1 + 0.05 f_m)$	

上記の表で、fmはテスト信号の周波数[kHz].を表します。

14. EU Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD.

declare, that the below mentioned product

Type of Product: Precision LCR Meter

Model Number: LCR-6300, LCR-6200, LCR-6100, LCR-6020, LCR-6002 are herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Law of Member States relating to Electromagnetic Compatibility (2014/30/EU) and Low Voltage Directive(2014/35/EU).

For the evaluation regarding the Electromagnetic Compatibility and Low Voltage Equipment Directive, the following standards were applied:

© EMC			
EN 61326-1	Electrical equipment for measurement, control and		
EN 61326-2-1	laboratory use EMC requirements (2013)		
EN 61326-2-2			
Conducted and Radiated Emission		Electrical Fast Transients	
EN 55011: 2009+A1:2010		EN 61000-4-4: 2012	
Current Harmonics		Surge Immunity	
EN 61000-3-2: 2014		EN 61000-4-5 :2006	
Voltage Fluctuation		Conducted Susceptibility	
EN 61000-3-3: 2013		EN 61000-4-6 : 2014	
Electrostatic Discharge		Power Frequency Magnetic Field	
EN 61000-4-2: 2009		EN 61000-4-8: 2010	
Radiated Immunity		Voltage Dip/ Interruption	
EN 61000-4-3:2006+A1 :2008+A2 :2010		EN 61000-4-11: 2004	

Low Voltage Equipment Directive 2006/95/EC & 2014/35/EU		
Safety Requirements	EN 61010-1: 2010	
	EN 61010-2-030: 2010	

GOOD WILL INSTRUMENT CO., LTD.

No. 7-1, Jhongsing Road, Tucheng Dist., New Taipei City 236, TaiwanTel: +886-2-2268-0389Fax: +866-2-2268-0639Web: www.gwinstek.comEmail: marketing@goodwill.com.tw

GOOD WILL INSTRUMENT (SUZHOU) CO., LTD.

No. 521, Zhujiang Road, Snd, Suzhou Jiangsu 215011, China Tel: +86-512-6661-7177 Fax: +86-512-6661-7277 Web: <u>www.instek.com.cn</u> Email: <u>marketing@instek.com.cn</u>

GOOD WILL INSTRUMENT EURO B.V.

De Run 5427A, 5504DG Veldhoven, The Netherlands Tel: <u>+31(0)40-2557790</u> Fax: <u>+31(0)40-2541194</u> Email:sales@gw-instek.eu

お問い合わせ 製品についてのご質問等につきましては、下記まで お問い合わせください。

株式会社テクシオ・テクノロジー

本社:〒222-0033 横浜市港北区新横浜2-18-13

藤和不動産新横浜ビル7F

[HOME PAGE] : <u>http://www.texio.co.jp/</u>

E-Mail:info@texio.co.jp

アフターサービスに関しては、下記サービスセンターへ サービスセンター:

〒222-0033 横浜市港北区新横浜2-18-13

藤和不動産新横浜ビル8F

TEL. 045-620-2786 FAX.045-534-7183