マルチチャンネル 任意波形ファンクションジェネレータ MFG-2000 シリーズ

ユーザーマニュアル

ISO-9001 CERTIFIED MANUFACTURER

G^WINSTEK

保証

任意波形ファンクションジェネレータ MFG-2000 シリーズ

この度は Good Will Instrument 社の計測器をお買い上げいただきあ りがとうございます。今後とも当社の製品を末永くご愛顧いただきます ようお願い申し上げます。

MFG-2000シリーズは、正常な使用状態で発生する故障について、 お買上げの日より1年間に発生した故障については無償で修理を致し ます。

ただし、ケーブル類など付属品は除きます。

また、保証期間内でも次の場合は有償修理になります。

- 1. 火災、天災、異常電圧等による故障、損傷。
 - 2. 不当な修理、調整、改造がなされた場合。
 - 3. 取扱いが不適当なために生ずる故障、損傷。
 - 4. 故障が本製品以外の原因による場合。
 - 5. お買上げ明細書類のご提示がない場合。

お買上げ時の明細書(納品書、領収書など)は保証書の代わりとなり ますので、大切に保管してください。

また、校正作業につきましては有償にて受け賜ります。

この保証は日本国内で使用される場合にのみ有効です。

This warranty is valid only Japan.

本マニュアルについて

ご使用に際しては、必ず本マニュアルを最後までお読みいただき、正しくご使用ください。また、いつでも見られるよう保存してください。

本書の内容に関しましては万全を期して作成いたしましたが、万一 不審な点や誤り、記載漏れなどがございましたらご購入元または弊 社までご連絡ください。

2021年2月

このマニュアルは著作権によって保護された知的財産情報を含んで います。当社はすべての権利を保持します。当社の文書による事 前承諾なしに、このマニュアルを複写、転載、翻訳することはできま せん。

このマニュアルに記載された情報は印刷時点のものです。製品の仕様、機器、および保守手順は、いつでも予告なしで変更することがありますので予めご了承ください。

Good Will Instrument Co., Ltd.

No. 7-1, Jhongsing Rd., Tucheng Dist, New Taipei City 236, Taiwan.

安全上の注意	4
先ず初めに	11
	11
設置と準備	21
クイックリファレンス	23
数値の入力について	
ヘルプメニューの使用方法	
波形の選択	
変調	30
スイープ波形	39
バースト波形	40
任意波形(ARB)	
ユーティリティ・メニュー	
Menu Tree	
初期設定	
操作	67
チャンネル選択	
波形選択(ch1/ch2)	69
波形選択(RF)	
波形選択(Pulse)	83
パワーアンプ	88
変調	
振幅変調(AM)	
ASK 変調(RF のみ)	

FSK 変調	110
位相変調(PM)	115
PSK 変調(RF のみ)	
パルス幅変調	
SUM 変調	
周波数スイープ	
バーストモード	147
ヤカンダリシステムの設定	157
2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	158
	161
システム設定	165
チャンネル設定	
デュアルチャンネル動作	173
任意波形	178
内蔵波形の利用	
内蔵波形の利用	
内蔵波形の利用 任意波形表示 任意波形の編集	
内蔵波形の利用 任意波形表示 任意波形の編集 任意波形の出力	
内蔵波形の利用 任意波形表示 任意波形の編集 任意波形の出力 任意波形の保存・呼出し	
内蔵波形の利用 任意波形表示 任意波形の編集 任意波形の出力 任意波形の保存・呼出し リモートインタフェース	
内蔵波形の利用 任意波形表示 任意波形の編集 任意波形の出力 任意波形の保存・呼出し リモートインタフェース	
内蔵波形の利用 任意波形表示 任意波形の編集 任意波形の出力 任意波形の保存・呼出し リモートインタフェースのテスト コマンド様文	
内蔵波形の利用 任意波形表示 任意波形の編集 任意波形の出力 任意波形の保存・呼出し リモートインタフェースのテスト コマンド構文 コマンド構文	179 180 187 195 196 204 205 208 213
内蔵波形の利用 任意波形表示 任意波形の編集 任意波形の出力 任意波形の保存・呼出し リモートインタフェース リモートインタフェースのテスト コマンド構文 コマンドリスト 488.2 共通コマンド	
内蔵波形の利用 任意波形表示 任意波形の編集 任意波形の出力 任意波形の保存・呼出し リモートインタフェースのテスト リモートインタフェースのテスト コマンド構文 488.2 共通コマンド ステータスレジスタコマンド	
内蔵波形の利用 任意波形表示 任意波形の編集 任意波形の出力 任意波形の保存・呼出し リモートインタフェース リモートインタフェースのテスト コマンド構文 コマンド構文 488.2 共通コマンド ステータスレジスタコマンド システムコマンド	

APPLy コマンド	222
Output コマンド	227
パルス設定コマンド	237
振幅変調(AM) コマンド	239
ASK 変調コマンド	243
FM 変調コマンド	246
FSK 変調コマンド	251
位相変調(PM)コマンド	254
PSK 変調コマンド	257
SUM 変調コマンド	260
パルス幅変調(PWM)コマンド	
スイープコマンド	267
バーストモードコマンド	276
任意波形(ARB)コマンド	285
COUNTER コマンド	291
PHASE コマンド	293
COUPLE コマンド	294
セーブ・リコールコマンド	296
エラーメッセージ	298
SCPI ステータスレジスタ	310
/ 1 & 3	0 / F
何錸	315
定格	315
EC Declaration of Conformity	322
任意波形テンプレート	323

この章には、ファンクションジェネレータを操作および 格納する際に従うべき安全に関する重要な指示が含 まれています。あなたの安全を確保し、ファンクション ジェネレータを最良の状態で維持するために操作を開 始する前に必ず以下をお読みください。

安全記号

以下の安全記号が本マニュアルおよび本器上に記載されています。

警告: ただちに人体の負傷や生命の危険につながる恐 れのある箇所、用法が記載されています。

注意:本器または他の機器へ損害をもたらす恐れのある箇所、用法が記載されています。

危険:高電圧の恐れあり

8

危険・警告・注意:本マニュアルを参照してください

保護接地端子

シャーシ(フレーム)端子

危険:高温注意

二重絶縁

本器を一般廃棄物として廃棄しないでください。素材に よって分別回収するか、購入された代理店にご相談くだ さい。

安全上の注意事項

一般注意事項・ 重い物を本器に置かないでください。

- 激しい衝撃または乱暴な取り扱いはしないでくたさい。
 本器を破損する恐れがあります。
- 本器に静電気を与えないで下さい。また、上または近く で静電気の放電を避けてください。
- ・各端子に対応したコネクタのみを使用ください。裸電線は使用しないでください。
- 本器は、許可無く分解してはいけません。資格を有す る技術者のみが分解を許可されています。
- 入力端子に 42Vpk を超える電圧を印加しないでください。また BNC コネクタの接地側に危険な高電圧を決して接続しないでください
- 出力端子に電圧を印加しないでください。
- トリガ入力および変調入力端子に±5Vを超える電圧を 印加しないでください。
- 電源コードは、製品に付属したものを使用してください。ただし、入力電源電圧によっては付属の電源コードが使用できない場合があります。その場合は、適切な電源コードを使用してください。濡れた手で電源コードのプラグに触らないでください。感電の原因となります。

(注意) EN 61010-1:2010 は測定カテゴリと要求事項を以下の要領で規定しています。本器はカテゴリⅡになります。

- 測定カテゴリIVは建造物への引込み電路、引込み口から電力量メ ータおよび一次過電流保護装置(分電盤)までの電路を規定します。
- 測定カテゴリIIIは直接分電盤から電気を取り込む機器(固定設備) の一次側および分電盤からコンセントまでの電路を規定します。
- 測定カテゴリ || はコンセントに接続する電源コード付機器(家庭用電気製品など)の一次側電路を規定します。
- 測定カテゴリーはコンセントからトランスなどを経由した機器内の二次 側の電気回路を規定します。ただしこの測定カテゴリは廃止され、II/ III/IVに属さない測定カテゴリOに変更されます。

電源 • AC 入力電圧(50~60Hz)

- パワーアンプなし機種 :AC 100V~240V(切換なし)
- パワーアンプあり機種 :AC 100V~120V/220V~240V
- 感電防止のため保護接地端子は大地アースへ必ず接続してください。
- ヒューズ パワーアンプあり機種 :T1A/250V
 パワーアンプなし機種 :T0.5A/250V
 - ヒューズが溶断した場合と思われる場合、当社までご 連絡ください。間違えてヒューズを交換された場合、火 災の危険があります。
 - ヒューズ交換は、本体内にあるため認定作業者のみ行ってください。

 接地について・本器はフローティング出力のファンクションジェネレータです。出力端子の GND はシャーシの GND は 42Vpk(DC + peak AC)の絶縁電圧を持ちます。 42Vpp を超えた場合内部カ回路が損傷を受けます。

- 出力端子の GND とシャーシの GND に電位差がある 場合は接続してはいけません。
- CH1とCH2のそれぞれのGNDに電位差がある場合 は接続してはいけません。

GWINSTEK

▲ 警告	 出力電圧とフローティングの電圧の合計が 42Vpk を超えないようにしてください。 動作中にコネクタ類に触らないでください。
クリーニング	 クリーニング前に電源コードを外してください。
	 中性洗剤と水の混合液に浸した柔らかい布地を使用します。液体はスプレーしないでください。本器に液体が入らないようにしてください。
	 ベンゼン、トルエン、キシレン、アセトンなど危険な材料 を含む化学物質を使用しないでください。
動作環境	 設置および使用箇所:屋内で直射日光があたらない場所、ほこりがつかない環境、ほとんど汚染のない状態 (以下の注意事項参照)を必ず守ってください
	• 相対湿度: < 80%
	• 標高:< 2000m
	• 温度: 0℃~40℃
	(汚染度) EN 61010-1∶2010 は、汚染度と要求事項を以下のように規 定しています。本器は、汚染度 2 に該当します。
	汚染とは「絶縁耐力または表面抵抗を減少させる個体、液体、またはガ ス (イオン化ガス) の異物の添加」を指します。
	 汚染度 1: 汚染物質が無いか、または有っても乾燥しており、非伝導性の汚染物質のみが存在する場合。汚染は影響しない状態。
	 汚染度 2: 通常は非伝導性の汚染のみが存在する。しかし、時々結露による一時的な伝導が発生する。
	 汚染度 3: 伝導性汚染物質または結露により伝導性になり得る非伝 導性物質のみが存在する。これらの状況で、機器は直射日光や風 圧から保護されるが、温度や湿度は管理されない。
保存環境	• 保存場所:屋内
	• 相対湿度∶< 70%

温度:-10℃~70℃

G≝INSTEK

調整・修理 ▲	 本製品の調整や修理は、当社のサービス技術および 認定された者が行います。
<u> </u>	 サービスに関しましては、お買上げいただきました当社 代理店(取扱店)にお問い合わせ下さいますようお願い 致します。なお、商品についてご不明な点がございまし たら、弊社までお問い合わせください。
保守点検につ いて	 製品の性能、安全性を維持するため定期的な保守、点検、クリーニング、校正をお勧めします。
	 この製品は、当社の厳格な試験・検査を経て出荷されておりますが、部品などの経年変化により、性能・仕様に多少の変化が生じることがあります。製品の性能・仕様を安定した状態でご使用いただくために定期的な校正をお勧めいたします。校正についてのご相談はご購入元または当社までご連絡ください。
ご使用につい て	 本製品は、一般家庭・消費者向けに設計・製造された 製品ではありません。電気的知識を有する方が マニュアルの内容を理解し、安全を確認した上でご使 用ください。また、電気的知識のない方が使用される場 合には事故につながる可能性があるので、必ず電気 的知識を有する方の監督下にてご使用ください。
Disposal	本器を一般廃棄物として廃棄しないでください。素材に よって分別回収するか、購入された代理店にご相談くだ さい。 廃棄物が環境に与える影響が少ないようにリサイ クルされます。
クラスについ て	本器は EMC のクラス A 機器に分類されます。クラス A 機器は工業地域での使用に制限されます。 クラス A 機器は外部の機器へ影響を与える可能性があり ます。 室内で使用すると無線干渉を引き起こすことがあり 使用
	者には適切な手段を講じるよう求められることがあります。

G^WINSTEK

電波法につい 本器の最大出力は 100kHz/20W です。10kHz/50W を超 て えて製品を利用する場合は高周波利用設備として総務大 臣の許可が必要です、許可申請は製品の設置場所を管 轄する総合通信局におこなってください。

- 関連法令
- ·電波法第100条(高周波利用設備)
- ・電波法施行規則第45条 (通信設備以外の許可を要する設備)
- ・無線局免許手続規則第26条
 (高周波利用設備の設置許可の申請)
- ·無線設備規則第65条
 - (通信設備以外の設備の電界強度の許容値)

イギリス向け電源コード

本器をイギリスで使用する場合、電源コードが以下の安全指示を満たしていることを確認してください。

このリード線/装置は資格のある人のみが配線することが 注意: できます。

この装置は接地する必要があります

重要: このリード線の配線は以下のコードに従い色分けされています:

緑/黄色: 接地 青: 中性 茶色: 電流 (位相)

擎告

	Ο	E	
\sim	0	O _c	
O_i	9.A	1	
N	Idely		
_			

主リード線の配線の色が使用しているプラグ/装置で指定されている色と 異なる場合、以下の指示に従ってください。

緑と黄色の配線は、Eの文字、接地記号 ⊕ がある、または緑/緑と黄色 に色分けされた接地端子に接続する必要があります。

青い配線はNの文字がある、または青か黒に色分けされた端子に接続 する必要があります。

茶色の配線はLまたはPの文字がある、または茶色か赤に色分けされた端子に接続する必要があります。

不確かな場合は、装置に梱包された説明書を参照するか、代理店にご相談ください。

この配線と装置は、適切な定格の認可済み HBC 電源ヒューズで保護す る必要があります。詳細は装置上の定格情報および説明書を参照してく ださい。参考として、0.75mm² の配線は 3A または 5A ヒューズで保護 する必要があります。それより大きい配線は通常 13A タイプを必要とし、 使用する配線方法により異なります。

ソケットは電流が流れるためのケーブル、プラグ、または接続部から露出 した配線は非常に危険です。ケーブルまたはプラグが危険とみなされる 場合、主電源を切ってケーブル、ヒューズおよびヒューズ部品を取除きま す。危険な配線はすべてただちに廃棄し、上記の基準に従って取替えて ください。

先ず初めに

この章では、本器の主な機能、外観、設定手順と電源 投入を紹介します。

主な特徴

モデル名	出力帯域		
	CH1	CH2	RF 出力
MFG-2110	10MHz	-	-
MFG-2120	20MHz	-	-
MFG-2120MA	20MHz	-	-
MFG-2130M	30MHz	-	-
MFG-2160MF	60MHz	-	160MHz
MFG-2160MR	60MHz	-	320MHz
MFG-2230M	30MHz	30MHz	-
MFG-2260M	60MHz	60MHz	-
MFG-2260MFA	60MHz	60MHz	160MHz
MFG-2260MRA	60MHz	60MHz	320MHz

モデル名	機能		
	パワー 変調・周波数カウンタ		LAN
	アンプ	スイープ・バースト	DSO-Link
MFG-2110			
MFG-2120			
MFG-2120MA	•	•	
MFG-2130M		•	
MFG-2160MF		•	
MFG-2160MR		•	
MFG-2230M		•	•
MFG-2260M		•	•
MFG-2260MFA	•	•	•
MFG-2260MRA	•	•	•

※:日本未発売の機種も含まれます。

G≝INSTEK

性能	 DDS ファンクションジェネレータ 高分解能:全レンジ 1uHz の周波数設定分解能 周波数安定度:20ppm 任意波形の性能・機能 最高サンプリングレート:200MS/s 最高繰り返しレート:100MS/s メモリ長:16k、出力範囲設定可能 垂直分解能:14bit 波形メモリ:10 グループ 出力波形表示 バースト繰り返し回数指定可能 低歪(60dBc)正弦波形出力 	
	• 消費電力	
	30W(パワーアンプ:なし)	
	80W(パワーアンプ:あり)	
特徴	• 標準波形:正弦波、方形波、パルス波、ランプ波、	
	ガウスノイズ	
	• スイープ機能(LIN/LOG /外部)	
	• AM 変調、FM 変調、PM 変調、FSK 変調、SUM 変調、	
	PWM 変調、変調ソース;内部/外部	
	• トリガ付きバースト機能	
	 42Vpk のフレーム GND 間絶縁 	
	• パルス波の立上り/立下り時間設定	
	 パネル設定の保存/呼出:10 グループ 	
	• 出力オーバーロード保護機能	
インタフェース	• 外部制御: USB、LAN(MFG-22xxのみ)	
	 4.3 インチカラーTFT 液晶(480 × 272)GUI 操作 	
	• 任意波形編集用 PC ソフトウェアによる波形作成・設定	
	 DSO-Link による DSO からの波形直接転送 	

(MFG-22xx のみ)

操作パネル

MFG-2260MRA/2260MFA フロント パネル

MFG-2160MR/2160MF フロント パネル

MFG- 2120MA/2130M フロント パネル

MFG- 2110/2120 フロント パネル

MFG- 2260M/2230M フロント パネル

プロントパネル概要

LCD	TFT カラー液晶、480 x 27	72 ドット
ファンクショ ンキー F1~F6	F 1	ファンクションキーに割り当てら れた機能は LCD に表示されま す。
オペレーショ ンキー	Waveform	波形選択を行います。
	(FREQ/Rate	周波数/レート入力を行います。
	AMPL	振幅入力を行います。
	DC Offset	DC オフセット入力を行います。
	UTIL	機能の設定を行うメニューを表 示します。
	ARB	波形を任意波形にします

	MOD Sweep Burst	MOD, Sweep, Burst キーは 変調、スイープ、バーストの設 定を表示します。
プリセットキ ー	Preset	パネル設定を初期化します。
アウトプット キー	\bigcirc	指定されているチャンネルの出 カをオン・オフします。
チャンネル 選択	CH1/CH2 (Pulse/RF)	設定画面および操作のチャンネ ルを切り替えます。
出力端子		CH1:Ch1 出力端子CH2:Ch2 出力端子Pulse:パルス出力端子RF:RF 出力端子Sync:同期信号出力MFG-21xx のみ
電源スイッ チ	Powier (000) - I 10	電源をオンオフします。
USB Host	Ť	USB メモリ/DSO Link 用のコネ クタ
矢印キー		桁移動をします
ツマミ	減少增加	左右に回転して数値を設定しま す。
		直接数値入力をします。

MFG-2260MRA/2260MFA リア パネル FAN トリガ端子 変調入力 AC切換 AC インレット 0 カウンタ入力 Ð \odot \odot \odot €€ USB-B端子 LAN端子 Sync端子 アンプ出力 アンプ入力

MFG-2120MA リア パネル

MFG-2160MR/2160MF/2130M リア パネル

MFG-2260M/2230M リア パネル

MFG-2110/2120 リア パネル

リアパネル概要

G≝INSTEK

LAN 端子		100Base-T端子 MFG-22xxのみ
USB-B 端子	¢	PC 接続用 USB-B 端子
カウンタ入力 端子	Counter N Counter Coun	周波数カウンタ入力端子
アンプ入力 端子		パワーアンプ入力
アンプ出力 端子		パワーアンプ出力
変調端子 (MOD IN)	MOD IN COLOR CA2 Vpk T	変調入力端子
トリガ端子 (TRIG)		外部トリガ入力・出力端子 MFG-21xx:マーカー出力、バー スト用トリガ出力、トリガ入力を切 替え MFG-22xx:トリガ出力
Sync 端子	SYNC SYNC SYNC SYNC SYNC SYNC SYNC SYNC	同期信号出力 MFG-21xx:Sync 出力固定 MFG-22xx:背面出力、マーカー 出力、バースト用トリガ出力を切 替

機種	端子名	動作モード	機能
MFG-21xx	IFG-21xx トリガ端子 外部トリガス		トリガ入力
		バーストモード	トリガ出力
		スイープモード	マーカー出力
		ARB モード	マーカー出力
	Sync 端子	全モード	Sync 出力
MFG-22xx	トリガ端子	外部トリガ入力	トリガ入力
	Sync 端子	スイープモード	トリガ出力
		ARB モード	マーカー出力
		その他	Sync 出力

ディスプレイ

パラメータ ウインドウ	パラメータ表示・編集エリア チャンネルごとに表示されます。
ステータスタブ	表示チャンネル、ページ表示
波形表示	出力波形表示
ソフトメニューキー	ソフトウエアによるファンクションキー表示エリア
	動作状態・モードによって表示内容が異なります。

G≝INSTEK

設置と準備

概要	本章では、ハンドルの設筑 ます。	章では、ハンドルの設定と電源投入について説明し ナ。		
ハンドルの設定	ハンドルを横へ引いて 広げ、回転させます。			
	本器を水平に設置する 場合のハンドルの位置 です。			
	本器を斜めに設置する 場合のハンドルの位置 です。			
	持ち運ぶ場合のハンド ルの位置です。			

電源投入 1. 背面パネルの電源ソケットに 電源コードを挿入します.

2. 前面の電源 SW をオンしま す。

3. オンになると画面にロゴが表示されます。

ロゴが消えると使用可能になります。

クイックリファレンス

この章では、操作のショートカット、内蔵ヘルプと工場出荷時のデフォルト 設定について説明します。

この章は、クイックリファレンスとして使用し、パラメータの設定や制限についての詳細な説明は、操作の章を参照してください。

数値の入力について25			
ヘルプメニューの	吏用方法		
波形の選択			
方形》	友: Square Wave		
ランプ	波:Ramp Wave		
正弦》	友: Sine Wave		
変調			
AM 変	[調		
ASK	変調(RF:Sine-DDS のみ)31		
FM 変	調		
FSK 3	変調		
PM 変			
PSK	変調(RF:Sine-DDS のみ)35		
SUM	変調		
PWM	変調		
スイープ波形			
バースト波形			
任意波形(ARB)			
任意》	皮形(内蔵波形∶指数上昇) 42		
任意》	z形(内蔵波形:パルス)		
任意》	皮形のポイントデータの設定		
任意》	皮形の直線によるデータ設定		
任意》	を形の出力範囲設定		
任意》	女形のN周期出力		
任意》	を形の繰り返し出力		
任意》	を形のマーカー出力		
ユーティリティ・メニ	ユーティリティ・メニュー		

	Save	48
	Recall	48
Menu Tree		49
	波形メニュー(CH1/CH2)	50
	波形メニュー(RF)	50
	波形メニュー(Pulse)	51
	任意波形:表示メニュー	51
	任意波形:内蔵波形	53
	任意波形:保存メニュー	53
	任意波形:呼出メニュー	54
	任意波形:出力メニュー	54
	変調メニュー(CH1/CH2)	55
	変調メニュー(RF:Sine-DDS)	56
	変調メニュー(RF:Sine-ARB)	57
	周波数スイープメニュー1	58
	周波数スイープメニュー2	58
	連続バーストメニュー	59
	バーストゲートメニュー	60
	システムメニュー(MFG-2200)	61
	システムメニュー(MFG-2100)	63
	CH1/CH2 メニュー	64
	Pulse/RF メニュー	64

数値の入力について

概要

本器には、主に数字キー、矢印キーとツマミの3種類 の数値入力の方法があります。 以下の手順は、パラメータを編集するために数値入力 をする方法を紹介します。

 画面下メニューの項目を選択するには対応する F1~F5 キーを押します。以下の表示では、F1 キー はソフトメニューの"SINE"に対応しています。

 2. 数値を編集するには、矢印キーでカーソル(_)を編 集したい桁まで移動します。

 ツマミを使用してパラメータの 編集をします。時計方向で値が 増加し反時計方向で値が減少 します。

(9)

 $\left(7\right)$ $\left(8\right)$

(0) (•) (+/_)

 強調表示されたパラメータの値 は数字キーで直接入力ができ ます。数値入力後にソフトキー の単位を選択すると確定しま す。

25

ヘルプメニューの使用方法

Sweep	スイープファンクションのヘルプを表
Function	示します。
Burst	バーストファンクションのヘルプを表
Function	示します。
DSOLink	DSO リンクのヘルプを表示します。
Hardcopy	ハードコピーのヘルプを表示しま す。

5. ハイライトの項目 4 ではスイープ機能についての ヘルプを見ることがでます。

1. Keypad
2. Basic Waveform 3. Create Aribitrary Waveform
4. Modulation Function
6. Burst Function
7. DSO Link 8. Hardcopy
9. Dual Channel
Select

6. ツマミでヘルプ情報をスクロールできます。

Type: Linear Start: 100Hz Stop: 1kHz	AMPL 3 DC Offset	veep Time: .000 Vpp 0.000 Voc	10 mSEC		MAAA	MT
SWP Time: 10mS	Start:	100.00000	0 Hz		rpe: Sweep Li	near
Mark: 300Hz Source: INT	Stop: Marker:	1.000000000	kHz	TI	igger Out: Fall	
Trig Out: Fall	Source	Туре	Start	Stop	SWP Time	More
Rotate the scroll	wheel to vi	ew the s	signal out	put		
						_

7. F6の Return キーで前に戻 ります。

F 6

G^w**INSTEK**

波形の選択

ー般的な波形(方形波、ランプ波、正弦波)の選択・設定方法を説明しま す。その他の選択・設定は波形選択の項(69ページ)を参照してください。

方形波:Square Wave

例:方形波、振幅 3Vpp、デューティ: 75%、周波数 1kHz.

出力:

入力:なし

1.	Waveform キーを押し、 Square (F2)を選択します。	Waveform Square
2.	Duty (F1)キーを押し、数字キー で75を入力し%(F5)キーを押し ます。	Duty 7 5 %
3.	Freq/Rate キーを押し、数字キー で 1 を入力し、kHz (F5)キーを押 します。	(FREQ/Rate) 1
4.	AMPL キーを押し、次に数字キ ーで 3 を入力し VPP (F6)キーを 押します。	AMPL 3
5.	対応した Output キーを押しま す。	0

ランプ波:Ramp Wave

例:ランプ波、振幅 5Vpp、周波数 10kHz、50%シンメトリ

出力: 1. Waveform キーを押し、Ramp (F5)を選択します。

入力:なし

2. SYM(F1)キーを押し、数字キー で50を入力し%(F5)キーを押し ます。

0

AMP

AMPL

0

1

5

- 3. Freq/Rate キーを押し、数字キー FREQ/Rate で10を入力し、kHz (F5)キーを 押します。
- 4. AMPL キーを押し、次に数字キ ーで5を入力し VPP (F6)キーを 押します。
- 5. 対応した Output キーを押しま す。

正弦波:Sine Wave

例:正弦波、振幅 10Vpp、周波数 100kHz

出力:

入力:なし

- 1. Waveform キーを押し Sine (F1) (Waveform Sine を選択します。
- 2. Freg/Rate キーを押し、数字キー FREQ/Rat 0 で100を入力し、kHz (F5)キーを 0 押します。
- 3. AMPL キーを押し、数字キーの 1、0を押し VPP (F6)を押します。
- 4. 対応した Output キーを押しま す。

G^w**INSTEK**

変調

変調の選択方法を説明します。モードや波形の選択によって利用できる 変調が異なります。

AM 変調

例:AM 変調、変調周波数:100Hz、変調波形:方形波、キャリア波形:正 弦波、1kHz、変調度:80%

ASK 変調(RF:Sine-DDSのみ)

例:ASK 変調、50%デューティ、キャリア:1KHz 正弦波、レート:内部 /10Hz、振幅 500mV

出力:

入力: なし

- 1. MOD キーを押し ASK (F2)を選択 します。
- 2. Waveform キーを押し Sine (F1)を (waveform) 選択します。
- Freq/Rate キーを押し、数字キー で1を入力し kHz (F5)キーを押し ます。
- 4. MOD キーを押し ASK (F2)、ASK Rate (F3)を選択します。
- 5. 数字キーで 10を押し、Hz(F2)キ ーを押します。

FREQ/Ra

MOD

ASKRate

Sine

ASK

ASK

6. MOD キーを押し ASK (F2)、ASK (MOD Ampl (F2)を選択します。

FM 変調

例: FM 変調、変調周波数:100Hz、変調波形:方形波、キャリア波形:正 弦波/1kHz、周波数偏移 100 Hz、ソース:内部 出力:

入力: なし

1.	MOD キーを押し FM (F2)を選択 します。	MOD FM
2.	Waveform キーを押し Sine (F1) を選択します。	Waveform Sine
3.	Freq/Rate キーを押し、数字キー で 1 を入力し kHz (F5)キーを押 します。	(FREQ/Rate) 1 kHz
4.	MOD キーを押し、FM (F2)を選 択し、Shape (F4)を押し Square (F2)を選択します。	MOD FM Shape Square
5.	MOD キーを押し、FM (F2)を選 択し FM Freq (F3)を押します。	MOD FM FMFreq
6.	数字キーで100を押し、Hz(F2) キーを押します。	

32

FSK 変調

例: FSK 変調、ホップ周波数:100Hz、キャリア波形:1kHz 正弦波、レー ト周波数:10Hz

出力:

- 1. MOD キーを押し、FSK (F3)を選 (MOD 択します。
- 2. Waveform キーを押し Sine (F1) (Waveform を選択します。
- 3. Freg/Rate キーを押し、数字キー FREQ/Rate で1を入力し、kHz (F5)キーを押 します。
- 4. MOD キーを押し、FSK(F3),FSK (MOD FSK Rate(F3)を押します。 FSK Rate
- 5. 数字キーで10を押し、Hz(F2) 1 (0 キーを押します。

入力:なし

Hz

FSK

Sine

PM 変調

例:PM 変調、キャリア波形:800Hz 正弦波、変調波:15kHz 正弦波、 位相偏移:50°、ソース:内部

出力:

- 1. Waveform キーを押し Sine (F1) を選択します。
- MOD キーを押し、PM (F4) を選 択します。

入力:なし

- Freq/Rate キーを押し、数字キー で800を入力し Hz (F4)キーを 押します。
- MOD キーを押し、PM (F4)、 Shape(F4)を押し、Sine(F1)を 選択します。
- 5. MOD キーを押し、PM (F4), PM Freq (F3)を押します。

PM Freq

MOD

FREQ/Rate

Sine

РМ

Ó O

PSK 変調(RF:Sine-DDS のみ)

例:PSK 変調、50%位相変調、キャリア波形:1kHz 正弦波、レート周波数:10Hz、ソース:内部

出力:

- 2. Waveform キーを押し Sine (F1) を選択します。
- Freq/Rate キーを押し、数字キー で1を入力し、kHz (F5)キーを押 します。

Sine

SUM 変調

例: SUM 変調、変調波形:100Hz 方形波、キャリア波形:1kHz 正弦波、 SUM 振幅:50%、ソース:内部

出力:	

- 1. MOD キーを押し、SUM (F5)を 選択します。
- 2. Waveform キーを押し Sine (F1) を選択します。

1

SUM

3. Freq/Rate キーを押し、数字キー で1を入力し kHz (F5)キーを押 します。

入力: なし

PWM 変調

例: PWM 変調、変調波形: 15kHz 正弦波、キャリア波形: 800Hz 方形 波、デューティ: 50%、ソース: 内部

出力:	1.	Waveform キーを押し Square (F2)を選択します。	Waveform
	2.	MOD キーを押し、PWM(F6)を 選択します。	MOD PWM

G^w**INSTEK**

G^wINSTEK

出力:

入力:なし

スイープ波形

例:周波数スイープ波形、開始周波数:10MHz、終了周波数:1MHz、 形式:ログスイープ、スイープ時間:1秒、トリガ:マニュアル、 マーカー:550Hz

Trigge

10.対応した Output キーを押しま す。 11.Sweep キーを押し、Source Source (F1), Manual (F3), Trigger (F1) キーを押すとスイープが始 まります。

バースト波形

例:バースト波形、回数指定(内部トリガ)、バースト周波数:1kHz、回数: 5、周期:10ms、バースト位相:0°、トリガ:内部、ディレイ:10us、トリガ出 力:立上り

0

- 7. 数字キーで0を押し、Degree (F5)を押します。
- 8. Burst キーを押し、N Cycle (F1)、TRIG Setup(F5)、INT (F1)を押します。
- 9. Burst キーを押し、N Cycle (F1)、TRIG Setup(F5)、Delay (F4)を押します。
- 10.数字キーで10を押し、uSEC (F2)を押します。
- 11.Burst キーを押し、N Cycle (F1)、TRIG setup (F5)、TRIG out (F5)、ON/OFF (F3)、Rise (F1)を押します。
- 12.対応した Output キーを押しま す。

Degree

GUINSTEK

任意波形(ARB)

任意波形(内蔵波形:指数上昇)

例:任意波形:指数上昇波形、開始:0、メモリ長 100、垂直スケール 327

入力:なし

1. ARB, Built in (F3), Wave (F4), Math (F2)を押し、ツマミで Exporise を選択後 Select(F5)を 押します。

- 2. Start(F1)を押し、数字キーの 0、 Enter(F5)を押します。
- 3. Length (F2)を押し、数字キーで 1、0、0を押し、Enter (F5)を押 します。
- 4. Scale(F3)を押し、数字キーで 327、Enter(F5)、Done(F4)を押 します。

ARB

Built in

任意波形(内蔵波形:パルス)

例:任意波形:パルス、周波数:1kHz、デューティ:25%,、開始点0

出力: 1. ARB キーを押し、Built in (F3), Basic (F1), More (F5), Pulse (F4)を押します。

ARB	Built in
Basic	More
Pulse	

Return

Return

3

Return

Done

5

2

- 2. Frequency(F1)を押し、数字キ ーの 1、kHz(F5)を押し、 Return キーで戻ります。
- Duty(F2)を押し、数字キーの 2、5、%(F5)を押し、Return キ ーで戻ります。
- Scale(F3)を押し、数字キーで 32767、Enter(F5)、Return (F6)、Done (F5)を押します。

任意波形のポイントデータの設定

例:アドレス:40 にデータ:300を設定する

出力:

- 1. ARB、Edit(F2)、Point (F1)、 Address (F1)を押します。
- 2. 数字キーの 4 0 Enter(F5)、 Return (F6)を押します。
- Data(F2)を押し、数字キーの 3、0、0、Enter(F5)、Return (F6)を押します。

Return

任意波形の直線によるデータ設定

例:任意波形:ラインの追加、アドレス 10:データ 30 からアドレス 50:データ 100 を直線で結ぶ

- 1. ARBを押します、Edit (F2)、 Line(F2)を押します。
- Start ADD(F1)を押し、数字キーの10 Enter(F5)、Return (F6)を 押します。
- Start Data(F2)を押し、数字キーの3、0、Enter(F5)、Return (F6)を押します。
- Stop ADD(F3)を押し、数字キーの5、0、Enter(F5)、Return (F6)を押します。
- Stop Data(F4)を押し、数字キーの1、0、0、Enter(F5)、Done(F5)を押します。

ARB

Edit

任意波形の出力範囲設定

例:設定済みのポイント0~1000の波形を出力する。

出力:

- 1. ARBを押し、Output(F6)を押し ます。
- Start(F1)を押し、数字キーの 0、 Enter(F5)、Return (F6)を押しま す。
- Length(F2)を押します、数字キ 一の1、0、0、0、Enter(F5)、 Return (F6)を押します。

Start 0 Enter Return

Output

ARB

任意波形のN周期出力

例:任意波形:10 周期バースト、ポイント 0~1000

- ARBを押し、Output(F6)を押します。
 Start(F1)を押し、数字キーの0、Enter(F5)を押します。
 Length(F2)を押します、数字キーの1、0、0、0、Enter(F5)を押します。
 Length(F2)を押します、数字キーの1、0、0、0、Enter(F5)を押します。
- 4. N Cycle(F4)を押します。

N Cycle

5. Cycles(F1)を押し、数字キーの 1、0、Enter(F5)を押します。

6. Trigger(F5)を押すと1回波形が Trigger 出力されます。

任意波形の繰り返し出力

例:任意波形:繰り返しバースト出力、ポイント 0~1000

出力:

- 1. ARBを押し、Output(F6)を押し ます。
- Start(F1)を押し、数字キーの 0、 Enter(F5)を押します。
- Length(F2)を押します、数字キ 一の1、0、0、Enter(F5)を押しま す。

4. Infinite(F5)を押します。

任意波形のマーカー出力

例:任意波形:マーカー出力、開始 30、長さ 80 出力:

1. ARBを押し、Output(F6)、 Marker (F3)を押します。

ARB		Output
Mal	ker	

Output

0

ARB

Length

Infinite

 Start(F1)を押し、数字キーの 30、Enter(F5)を押します。

マーカー出力は 背面 TRIG 端子 になります。

 Length(F2)を押します、数字キ ーの 80、Enter(F5)、Return を 押します。

ユーティリティ・メニュー

Save

例:設定を内部メモリ5に保存する

- 1. UTIL、Memory(F1)キーを押し ます。
- ツマミで Memory5 を選択し、 Store(F1)を押します。 ツマミで Setting を選択し、Done(F5)を押 します。

Recall

例:内部メモリ5から設定を呼び出す

1. UTIL、Memory(F1)キーを押し ます。

Memory

Store

UTIL

 ツマミで Memory5 を選択し、 Recall(F2)を押します。 ツマミで Setting を選択し、Done(F5)を押 します。

Menu Tree

波形メニュー(CH1/CH2)

波形メニュー(RF)

G≝INSTEK

波形メニュー(Pulse)

任意波形:表示メニュー

任意波形:編集メニュー

G^W INSTEK

任意波形:内蔵波形

任意波形:保存メニュー

NewFolder は MFG-2200 シリーズのみの機能です。

任意波形:呼出メニュー

任意波形:出力メニュー

変調メニュー(CH1/CH2)

55

変調メニュー(RF:Sine-DDS)

本機能は RF チャンネルの波形選択を Sine-DDS とした場合に表示されます。

変調メニュー(RF:Sine-ARB)

本機能は RF チャンネルの波形選択を Sine-ARB とした場合に表示されます。

周波数スイープメニュー1


```
周波数スイープメニュー2
```


連続バーストメニュー

バーストゲートメニュー

システムメニュー(MFG-2200)

G^w**INSTEK**

MFG-2000 シリーズ ユーザーマニュアル

LAN メニュー

システムメニュー(MFG-2100)

G^w**INSTEK**

СН1/СН2 メニュー

DSO Link は MFG-2200 シリーズのみ設定できます。

Phase は Pulse チャンネルのみ設定できます。 DSO Link は MFG-2200 シリーズの RF チャンネルのみ設定できます。

Preset

初期設定

Preset キーは、パネル設定を初期状態に戻します。

出力設定		
	波形	Sine wave
	周波数	1kHz
	振幅	3.000 Vpp
	オフセット	DC 0.00V
	振幅単位	Vnn
	ニューロー ニュー ニュー シンス	500
変調		0032
	キャリア波形	1kHz 正弦波
	変調波形	100Hz 正弦波
	AM 変調度	100%
	ASK amplitude	500mVpp
	ASK frequency	10Hz
	FM 偏移	100Hz
	FSK ホップ周波数	100Hz
	FSK 周波数	10Hz
	PM 位相変調度	180°
	PSK 位相	180°
	PSK 固波数	10Hz
	SUM 振幅	50%
PWM 変調		0070
	キャリア波形	1kHz 方形波
	変調波形	20kHz 正弦波
	PWM デューティ	50%
スイープ	, _ , ,	
	スタート周波数	100Hz
	ストップ周波数	1kHz
	スイープ時間	1ms
	スイープ種類	直線
	スイープ動作	上一〇
		· 」 ~

G≝INSTEK

バースト		
	バースト周波数	1kHz
	N-サイクル	1
	バースト周期	10ms
	バースト開始位相	0°
	バースト動作	オフ
システム		
	バックアップ設定	あり
	出力	オフ
トリガ		

ソース 内部

バックアップ設定を Default にしてから電源を再投入しても初期状態に戻ります。

本章では基本的な波形出力を説明します。変調、スイープ、バースト、任 意波形、チャンネル同期については別章で説明します。

択	68
CH1/CH2/RF/Pulse キー	. 68
I/ch2)	69
	. 69
方形波	. 69
三角波	. 70
パルス幅の設定	. 71
ランプ波の設定	. 72
ノイズ波の設定	. 73
周波数の設定	. 73
振幅の設定	. 74
DC オフセットの設定	. 75
	沢 CH1/CH2/RF/Pulse キー I/ch2) 声弦波 方形波 三角波 パルス幅の設定 ランプ波の設定 ノイズ波の設定 間波数の設定 振幅の設定 DC オフセットの設定

チャンネル選択

本シリーズはマルチチャンネルのファンクションジェネレータです。各種設 定はチャンネルごとに行いますので、まず操作するチャンネルを選択しま す。

CH1/CH2/RF/Pulse キー

- パネル操作 1. CH1,CH2,CH1/CH2,Pulse,RF また は Pulse/RF を押します。
 - 選択されたチャンネルの表示が明るくなり、非選択のチャンネルの表示は暗くなります。CH1 が選択されると以下のような表示となります。

Pulse FREQ 500.000000 Hz	Α Γ
AMPL 2.000 VPP Phase 10.0 °	$\frac{1}{1}$
DC Offset 0.000 Voc	Ampi
DUTY 60.000 %	★/ \ .
Lead Edge 500.000 uSec	DCoffset
Trail Edge 10 nSec	∢ —1/FREQ— → ↓
GH1 FREQ 1.00000000 kHz	▲ Λ
AMPL 3.000 Vpp Phase 0.0 °	
DC Offset 0.000 Voc	Ampi-
WIDTH 200.000 uSec	★_/ \
	DCoffset
	I/FREQ →
Load	Phase

終端の設定

 Load キーを押すと 50Ω および HighZ のキーで終端の値を選択でき ます。

- 位相の設定 4. Pha
 - Phase キーを押すと数字キーと degree キーで位相が度で設定でき ます。0 Phase は 0 度に設定、内部 再同期は Sync Int キーを押します。 Sync Int
の設定 5. DSO Link キー、Search キーを押す と前面の USB に接続されている DSO の検索を行います。有効な DSO が見つかると CH1 ~CH4 の選 択可能なチャンネルのキーが表示さ れます。

波形選択(ch1/ch2)

本器の CH1 及び CH2 には正弦波、方形波、三角波、パルス波、ランプ 波、ノイズの 6 種類の波形が用意されています。 CH1 キーまたは CH1/CH2 キーを押して表示を有効にしてから設定を行います。 正弦波

パネル操作 1. Waveform キーを押します。

2. Sine(F1)を押します。

FREQ 25.00000000000 MHz AMPL 1.000 VPP Phase 0.0 DC Offset 0.000 Voc WIDTH 20 nSec 12 nSec 12 nSec FREQ 1.00000000000 MHz AMPL 300.0 mVpp Phase 0.0 ° DC Offset 0.000 Vpc DCoffse -1/FREQ Sine Square Triangle Pulse Ramp Noise

方形波

パネル操作 1. Waveform キーを押します。

Waveform

Sine

三角波

パネル操作 1. Waveform キーを押します。 2. Triangle(F3)キーを押します。 Triangle

CH2 FR	EQ 1.000 1.000 Vpp	0000000 kH Phase O	lz .0 • Am		
DC Offset	U.UU Voc				
				-1/FREG	₂—► ‡
CH1 FR	EQ 1.000	0000000 kH	Iz 🔺	-	
AMPL 3	1.000 VPP	Phase 0	.0 ° Am	, <u> </u>	
DC Offset	U.UU VDG		↓	_ ``	
					DCoffset
					2> ↓
Sine	Square	Triangle	Pulse	Ramp	Noise

パルス幅の設定

パネル操作	1.	Waveform キーを押しま	ミす 。	Waveform	
	2.	Pulse(F4)キーを押して 入ります。	設定に	Pulse	
	3.	Width(F1)キーを押すと 幅の表示が明るくなりま	パルス す。	Width	
	4.	桁移動と数字キー、ツマ ってパルス幅の値を設算 す。	?ミを使 定しま		
	5.	nSEC(F2)~SEC(F5) ^d 位を設定します。	キーで単	nSEC	SEC
設定範囲		パルス幅	≧20ns がありま	(周波数によ ミす)	り制限

Pulse FREQ	1.000000000	kHz	Ā Λ	
AMPL 2.000	VPP Phase	0.0 °		
DC Offset 0.00)0 Voc		Ampi	1
DUTY 10.000	%		¥ \	
Lead Edge	5.000	uSec		DCoffset
Trail Edge	10	nSec	-1/FRE	Q—▶ 🟅
GH1 FREQ	1.000000000	kHz	 Λ 	
AMPL 3.000	VPP Phase	0.0 °	<u>.</u> /\	
AMPL 3.000 DC Offset 0.00	Vpp Phase)0 Vpc	0.0 °	Ampl	
AMPL 3.000 DC Offset 0.00 WIDTH	VPP Phase)0 Voc 200.000 uSec	0.0 °	Ampl-	
AMPL 3.000 DC Offset 0.00 WIDTH	VPP Phase)0 Voc 200.000 uSec	0.0 °	Ampl	DCoffset
AMPL 3.000 DC Offset 0.00 WIDTH	Vpp Phase)0 Voc 200.000 uSec	0.0 *	Ampl	DCoffset

ランプ波の設定

パネル操作	1.	Waveform キーを押します。	Waveform
	2.	Ramp(F5)を押します。	Ramp
	3.	SYM(F1)を押すと、シンメトリ設 定が明るくなります。	SYM
	4.	桁移動と数字キー、ツマミを使 ってシンメトリ(増加方向の割合) の値を設定します。50%で三角 波となります。	
	5.	%(F5)キーで単位を設定しま す。	% F 5
設定範囲		シンメトリ(増加方向の割合) 0%	~100%

CH2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.00 Voc	Ampl
	← −1/FREQ → 🐫
CH1 FREQ 1.000000000 kHz AMPL 3.000 VPp Phase 0.0 ° DC offset 0.00 Voc SYMM 50.0 %	Ampi ↓
SYM	% Return

ノイズ波の設定

- パネル操作 1. Waveform キーを押します。
 - 2. Noise(F6)を押します。

CH2 FR AMPL DC Offset	ieq 1.00 3.000 Vpp 0.00 Vpc	0000000 kH Phase O	lz .0 °	∱ Amp ↓		DCoffset
						⊶► ‡
AMPL DC Offset	3.000 Vpp 0.00 Vpc			∱ Amp ↓		DCoffset
					-1/FREG	₂► ↓
Sine	Square	Triangle	Pulse		Ramp	Noise

周波数の設定

パネル操作 1. FREQ/Rate キーを押します。

2. 周波数の表示が赤くなります。

<u>G¤INSTEK</u>	MFG-2000 シリーズ ユーザーマニュアル					
3.	桁移動と数字キー、ツ って周波数の値を設定	マミを使 でのの します。 でので でので のので のので				
4.	単位を uHz(F2)、MH: Hz(F4)、kHz(F5)、MH 設定します。	z(F3)、 Hz(F6)で <u>uHz</u> ~ MHz				
設定範囲	正弦波	1µHz~320MHz(max)				
	方形波	1µHz~25MHz(max)				
	パルス波	1µHz~25MHz(max)				
	ランプ波	1µHz~1MHz				
	CH2 FREQ 1.00000000 AMPL 3.000 Vpp Phase DC Offset 0.00 Voc CH1 FREQ 1.00000000 AMPL 3.000 Vpp DC Offset 0.00 Voc	kHz 0.0 ° Ampl ↓ DCoffset ↓ ↓ DCoffset ↓ ↓ DCoffset ↓ ↓ DCoffset ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓				
	設定範囲は本器の周期 れます。	波数帯域の最大値に制限さ				

振幅の設定

パネル操作 1. AMPL キーを押します。

AMPL

2. 振幅の表示が赤くなります。

DC オフセットの設定

パネル操作 1. DC Offset キーを押します。

- 2. DC Offset 設定が赤くなります。
- 3. 桁移動と数字キー、ツマミを使 ⑦ ③ ④ の
 ってオフセット電圧の値を設定 ④ ④ ④ ①
 します。
 ① ④ ①
 ④ ④ ⑦ ②

波形選択(RF)

本器の RF チャンネルは用途の異なる 2 種類の正弦波(Sine-DDS、 Sine-ARB)、方形波、パルス波、ランプ波、ノイズの 6 種類の波形が用 意されています。 RF キーまたは Pulse/RF キーを押して表示を有効にし てから設定を行います。

正弦波

パネル操作	1. Waveform キーを押します。 Waveform	
	2. Sine-DDS(F1)または Sine- ARB(F2)を押します。 Sine-ARB	
	RF FREQ 1.000000000 kHz AMPL 1.00 Vpp Ampl DC Offset 0.000 Voc Ampl	offset ↓
	PILLSE FREQ 1.00000000 KHz AMPL 2.000 VPP Phase 0.0 ° DC Offset 0.000 Vpc Ampl WIDTH 500.000 uSec DC Lead Edge 10 nSec DC Trail Edge 10 nSec Impl	offset ↓
	Sine-DDS Sine-ARB Square Pulse Ramp Nois	se

波形による機能の違い						
波形	Sine-DDS	Sine-ARB				
周波数制限	全域	60MHz 以下				
変調方式	FM / FSK / PM /	FM / FSK / PM				
	AM / ASK / PSK	PWM				

※:PWM 変調以外は Sine-DDS で全て対応可能です。

方形波

パネル操作	1. Waveform キーを押します。	Waveform
	2. Square(F2)キーを押します。	Square
	 Duty(F1)を押すと、設定パラメ 一タが明るくなります。 	DUTY
	4. 数字キーとツマミを使ってデュ ーティを設定します。	
	5. %(F5)を押します。	% F 5
設定範囲	デューティ範囲 0.01%~99. 制限があり	99%(周波数により ます。)
	RF FREQ 1.000000000 kHz AMPL 1.00 Vpp DC Offset 0.000 Vpc DUTY 50.000 % MILE FREQ 1.000000000 kHz AMPL 2.000 Vpp Phase 0.0 ° DC Offset 0.000 Vpc DC Offset 0.000 Vpc Phase 0.0 ° DC Offset 0.000 Vpc Trail Edge 10 nSec Trail Edge 10 nSec DUTY %	Ampl DCoffset

G^wINSTEK

パルス幅の設定

パネル操作	1.	Waveform キーを押しま	ミす 。	Waveform	
	2.	Pulse(F4)キーを押して 入ります。	設定に	Pulse	
	3.	Width(F1)キーを押すと 幅の表示が明るくなりま	パルス す。	Width	
	4.	桁移動と数字キー、ツマ ってパルス幅の値を設う す。	?ミを使 定しま		
	5.	nSEC(F2)~SEC(F5) ^d 位を設定します。	キーで単	nSEC ~	SEC
設定範囲		パルス幅	≧20ns	(周波数によ	り制限

≧20ns(周波数により制限 があります)

RFFR	EQ 1.0	0000000	kHz	Ť ∧	
AMPL 1.00	Vpp				
DC Offset	0.000 Voc				† I
WIDTH	500.00	() uSec		★ \	
					2▶ ↓
PULSE FR	EQ 1.0	0000000	kHz	▲ ∧	
AMPL 2.00	O Vpp	Phase 0	.0 °	<u>!</u> . / \	
DC Offset	0.000 Vi	G		Ampl	*
WIDTH	500.00	0 uSec		<u>↓</u> / \	
Lead Edge		10 nSec	;		DCoffset
Trail Edge		10 nSec	:		⊇—► ↓
Width	nSEC	uSEC	mSEC	SEC	Return

ランプ波の設定

パネル操作 1. Waveform キーを押します。

ノイズ波の設定

- パネル操作 1. Waveform キーを押します。
 - 2. Noise(F6)を押します。

RF		7	the color	ullah .
AMPL 1.00 VPP				
DC Offset 0.000 Voc				MWIIFI 🕇 🛛
				DCoffset
			-1/FREG	⊶► ‡
PULSE FREQ 1.0	0000000	kHz Z	ΓA	
AMPL 2.000 VPP	Phase 0	.0 °		
DC Offset 0.000 V	06	<u>^</u>	mpi	1
WIDTH 500.00)0 uSec			
Lead Edge	10 nSec	;		DCoffset
Trail Edge	10 nSec	;	-1/FREG	⊶⊸► 🐇
Sine-DDS Sine-ARB	Square	Pulse	Ramp	Noise

周波数の設定

パネル操作	1. FREQ/Rate キーを	押します。 (FREQ/Rate)
	2. 周波数の表示が赤。	くなります。
	3. 桁移動と数字キー、 って周波数の値を話	ツマミを使 ⑦ 0 0 定します。 0 0 0 0 0 0 0 0 0 0 0 0
	4. 単位を uHz(F2)、M Hz(F4)、kHz(F5)、N 設定します。	Hz(F3)、 MHz(F6)で <u>uHz</u> ~ MHz
設定範囲	正弦波(Sin-ARB)	1µHz~60MHz(max)
	正弦波(Sine-DDS)	1µHz~320MHz または 1µHz~160MHz
	方形波	1µHz~25MHz(max)
	パルス波	1µHz~25MHz(max)
	ランプ波	1µHz~1MHz

振幅の設定

RF FREQ 1.0	0000000	kHz 🔺		
AMPL 1.00 VPP				
DC Offset 0.000 Voc				/ †
		× ×		
			La vener	
			- WHEEK	-1↓
PULSE FREQ 1.0	00000000	kHz 🗛		
AMPL 2.000 VPP	Phase 0	.0 °		
DC Offset 0.000 Vi	IG	Am	pi	1
WIDTH 500.00	l0 uSec	+		
Lead Edge	10 nSec	;		DCoffset
Trail Edge	10 nSec	;	1/FREG	⊇—► ↓
uHz	mHz	Hz	kHz	MHz

周波数設定範囲は本器の周波数帯域の最大値 に制限されます。最大値は定格を参照ください。

パネル操作	1. AMPLキー?	を押します。	AMPL
	2. 振幅の表示;	が赤くなります。	
	3. 桁移動と数 って振幅の値	タキー、ツマミを使 重を設定します。	
	4. dBm(F2)、m VRMS(F4)、 VPP(F6)から す。	NVRMS(F3)、 mVPP(F5)、 5単位を選択しま	dBm VPP
設定範囲		50Ω 負荷時	High Z 時
	範囲	1mVpp~1Vpp	2mVpp~2Vpp
	単位	Vpp, Vrms, dBm	

RF FR	EQ 1.0	0000000	kHz	\frown	
AMPL 1.00	Vpp				
DC Offset	0.000 Vpc				
				↓ −1/FREC	₂—► ‡
PULSE FR	EQ 1.0	0000000	kHz	▲	
AMPL 2.00) Vpp	Phase 0	.0 °		
DC Offset	0.000 Vi	DG		Ampl	Ť
WIDTH	500.00)0 uSec		¥_/ \	
Lead Edge		10 nSec	;		DCoffset ⊥
Trail Edge		10 nSec	;	-1/FREC	2► 🟅
	dBm	mVRMS	VRMS	mVPP	VPP

DC オフセットの設定

本器の Pulse チャンネルはデューティまたはパルス幅の設定および立上 時間・立下時間を設定することができます。Pulse キーまたは Pulse/RF キーを押して表示を有効にしてから設定を行います。

デューティの設定

DUTY

Return

G^wINSTEK

パルス幅の設定

现中午日		ぷり フ 価	(国:本粉にトリキ)四
	5.	nSEC(F2)~SEC(F5)キーで単 位を設定します。	nsec ~ sec
	4.	桁移動と数字キー、ツマミを使 ってパルス幅の値を設定しま す。	
	3.	Width(F1)キーを押すとパルス 幅の表示が明るくなります。	Width
	2.	Width(F2)キーを押して設定に 入ります。	Width
パネル操作	1.	Waveform キーを押します。	Waveform

設定範囲

パルス幅

≧20ns(周波数により制限 があります)

RF FREG	1	1.000000	Hz	A	\wedge	
AMPL 1.00	Vpp			i mol d	/	
DC Offset 0	.000 Voc			Ampi -		/ †
				¥	`	
						DCoffset
					1/FREC	2▶ ↓
Pulse FREG	a 1.00	0000000	kHz	A	Δ	
AMPL 5.000	Vpp	Phase (.0 °			
DC Offset 0	.000 Vo	C		Ampl -	/ \	<u>†</u>
WIDTH	500.00	0 uSec		¥ /		
Lead Edge		261.2 u	Sec			DCoffset
Trail Edge		244.1 u	Sec		<1/FREC	2►
Width	nSEC	uSEC	mSEC		SEC	Return

立上り時間・立下り時間の設定

パネル操作	1. Waveform キーを押します。	Waveform
	2. Lead Edge (F3)キーを押す LeadEdge の表示が明るな ます。Trail Edge(F4)キーを すと Trail Edge の表示が明 なります。	と Lead Edge たり 押 Trail Edge るく
	3. 桁移動と数字キー、ツマミを ってパルス幅の値を設定しま す。	
	4. nSEC(F2)~SEC(F5)キーで 位を設定します。	ễ単
設定範囲	立上り時間 ≧20 立下り時間 があ	Dns(周波数により制限 ります)
	RF FREQ 1.000000 Hz AMPL 1.00 Vpp	AmpI ↓ DCoffset ↓ 1/FREQ → ↓ ↓
	Pulse FREQ 1.000000000 kHz AMPL 5.000 Vpp Phase 0.0 ° DC Offset 0.000 Vec WIDTH 500.000 uSec Lead Edge 261.2 uSec USec USec USec USec	Ampl
	nSEC uSEC mSEC SE	C Return

MFG-2000 シリーズ ユーザーマニュアル

周波数の設定

振幅の設定

パネル操作 1. AMPL キーを押します。

AMPL

2. 振幅の表示が赤くなります。

DC オフセットの設定

パネル操作 5. DC Offset キーを押します。

- 6. DC Offset 設定が赤くなります。
- 7. 桁移動と数字キー、ツマミを使 ⑦ ③ ④
 ってオフセット電圧の値を設定 ③ ④ ④
 します。
 ① ④ ③
 ④ ④ ⑨ ④

	8. mVDC(F5)、VI 選択します。	DC(F6)で単位を	mVDC VDC
設定範囲	範囲	50Ω 負荷時 ±0.5Vpk	High Z 時 ±1Vpk
	KF FREQ AMPL 1.00 Vpp DC Offset 0.000 Vp	1.000000 Hz	DCoffset
	Pulse FREQ 25.001 AMPL 5.000 VPP DC Offset 0.000 DUTY 50.0 % Lead Edge Trail Edge	000000000 MHz A Phase 0.0 * Yec 10 nSec 10 nSec	DCoffset

パワーアンプ

MFG-2120MA, MFG-2260MFA, 2260MRA はスピーカーなどを直接 駆動するためのパワーアンプを内蔵しています。本アンプは歪率が 0.1%以下(振幅:1Vpp 未満時)となっています。

入出力

接続	1. アンプの入力は背面の IN の BNC を使用します。
	2. アンプの出力は背面の OUT の our の BNC を使用します。
<u>!</u>	本アンプの帯域は 5Hz~100KHz、最大入力電圧は 1.25Vpmax です。 ゲインは 20dB、負荷電流は最大 1.6A、出力電力は最大 20W です。

内蔵アンプの劣化や機器の損傷を防止するために、アンプは以下のエリ アで動作するようにしてください。

出力電圧·電流特性

振幅の大きい入力の場合に周波数が高くなると熱が発生して効率が低下しますのでご注意ください。

本器は AM, ASK, FM, FSK, PM, PSK, PWM, SUM の変調波形およびスイープ波形、バースト波形が出 カできます。変調ごとにパラメータが保存できます。ス イープ機能とバースト機能は変調と同時使用できませ ん。変調機能はどれか 1 つが有効になります。

振幅変調(Al	M)	93
	振幅変調の選択	
	キャリアの選択	
	キャリア周波数の設定	
	変調波形の選択	95
	変調周波数(AM Freq)の設定	
	変調度(AM Depth)の設定	
	変調信号入力の選択	
ASK 変調(F	RFのみ)	99
	ASK 変調の選択	99
	キャリア波形の選択	100
	キャリア周波数の設定	100
	ASK 振幅の設定	101
	ASK レートの設定	102
	ASK 変調信号入力の選択	103
周波数変調((FM)	
	、 FM 変調の選択	
	キャリア波形の選択	105
	キャリア周波数の設定	105
	FM 変調波形の選択	106
	FM 変調周波数の設定	107
	周波数偏移の設定	108
	FM 変調信号入力の選択	109
FSK 変調…		110
	FSK 変調の選択	110

	と、リマ冲取の溶り イイイ
	キャリア波形の選択111
	キャリア周波数の設定111
	ホップ周波数の設定112
	FSK レートの設定113
	FSK 変調信号入力の選択 114
位相変調(P	M)115
	位相変調の選択 115
	キャリア波形の選択 116
	キャリア周波数の設定116
	PM 変調波形の選択117
	PM 変調周波数の設定118
	位相偏移の設定119
	PM 変調信号入力の選択
PSK 変調(F	RFのみ) 121
	PSK 変調の選択 121
	10代 交前の送伏
	イヤリア 波形の迭代
	イヤリカ 同 成 数 U 設 定
	FSK 変調凹怕里の設定123
	PSK レートの設定124 DOK 本部に見またの選択
• .	PSK 変調信号人刀の選択125
パルス幅変	調
	パルス幅変調の選択126
	キャリア波形の選択127
	キャリア周波数の設定127
	PWM 変調波形の選択127
	PWM 変調周波数の設定128
	変調波デューティサイクルの設定129
	PWM 変調信号入力の選択130
SUM亦锢	131
00111 叉响。	SUM 亦掴へ躍坦 121
	50M 変調の選れ
	イヤリア 成形の 選択
	イヤリア同次致の設定
	SUM 変調波形の選択
	SUM 変調周波数の設定
	SUM 振幅の設定135
	SUM 変調信号人力の選択136
周波数スイ-	ープ137
	スイープ動作の選択137
	開始周波数、終了周波数の設定137
	センター周波数、周波数スパンの設定
	スイープモードの選択142

	スイープタイムの設定	
	マーカー周波数	
	スイープモードのトリガソース	145
バーストモ-	ード	147
	バーストモードの選択	147
	バーストモード	
	バースト周波数	
	バーストサイクル・バーストカウント	
	連続バースト	
	バースト周期	
	バースト位相	
	バーストトリガソース	
	バースト遅延	155
	バーストトリガ出力	156

振幅変調(AM)

AM 波形はキャリア波形と変調波形から生成されます。変調されたキャリ ア波形の振幅は、変調波形の振幅に依存します。

キャリア周波数、振幅、DCオフセットの設定および変調波形を内部・外部入力から選択します。

振幅変調の選択

- パネル操作 1. MOD キーを押します。
 - 2. AM(F1)を押します。

MOD

AM

<u>G</u>UINSTEK

キャリアの選択

概要 正弦波、方形波、ランプ波、パルス、ノイズ、任意波形 をキャリアとして選択できます。初期値は正弦波です。 高調波と DC はキャリアに選択できません。キャリア の選択の前に変調の設定が必要です。

- キャリアの選択 1. Waveform キーを押します。
 - 2. Sine(F1)、Square(F2)、 Pulse(F4)、Ramp(F5)から波 形を選択します。

Waveform

任意波形を選択する場合は任 Page 42
 意波形の設定の章を参照しま Page 173
 す。

設定範囲 キャリア波形 正弦波、方形波、ランプ波、パルス、 任意波形

キャリア周波数の設定

設定できるキャリアの周波数は波形、モデルで異なります。初期値は 1kHzです。

パネル操作 1. FREQ/Rate キーを押します。

- 2. 周波数の表示が赤くなります。
- 3. 桁移動と数字キー、ツマミを使 ⑦ ④ ④ の って周波数の値を設定します。 ⑦ ④ ④ ① ① ① ① ③ ④ ① ① ④ ① ① ① ① ①

	4. 単位を uHz(Hz(F4)、kHz 設定します。	(F2)、MHz(F3)、 z(F5)、MHz(F6)で <u>uHz</u> ~ MHz
設定範囲	キャリア波形	キャリア周波数
	正弦波	1µHz~ 60MHz(max)
	方形波	1µHz~25MHz(max)
	三角波	1µHz~1MHz
	ランプ波	1µHz~1MHz
	初期値	1 kHz

変調波形の選択

本器は変調波形に内部信号と外部入力信号を設定できます。内蔵波形 は正弦波、方形波、三角波、ランプ波(アップ、ダウン)から選択します。初 期値は正弦波です。

パネル操作	1. MOD キーを押します。	MOD
	2. AM(F1)、Shape(F4)を す。	押しま AM Shape
	3. Sine(F1)、Square(F2) Triangle(F3)、UpRam DnRamp(F5)から波形 ます。	、 p(F4)、 を選択し <u>sine</u> ~ ^{DnRamp}
1. 注音	方形波	50% デューティ
	三角波	50%シンメトリ
	アップランプ	100% シンメトリ
	ダウンランプ	0% シンメトリ

CH2 F	REQ 1.00	0000000 kH	lz ∩ ∘	≜	\wedge	
DC Offset	<u>3.000 400 </u> 0.00 Vpc		.0	Ampl 4		DCoffset
				ŀ	1/FREC	≥—► ‡
CH1 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.00 Vpc DC. Offset 0.00 Vpc 0.00 Vpc 0.00 Vpc						
AM Depth: 100.0 % Source: INT AM Freq: 100.000 Hz Shape: Sine						
Sine	Square	Triangle	UpRam	,	DnRamp	Return

変調周波数(AM Freq)の設定

変調波形の周波数は 2MHz ~20kHz の設定が可能です。

- パネル操作 1. MOD キーを押します。 MOD 2. AM(F1)、AM Freq(F3)を押しま AM す。 AM Freq
 - 3. 変調周波数の設定が赤くなります。

5	5. MHz(F1)、Hz(F2)、kH ら単位を選択します。	z(F3)か mHz ~ kHz
設定範囲	変調周波数	2MHz~20kHz
	初期値	100Hz

変調度(AM Depth)の設定

変調度は最大振幅、最小振幅を設定します。無変調キャリアの振幅と変調波形の最小振 幅偏差の割合です。

- パネル操作 1. MOD キーを押します。
 - AM(F1)、Depth(F2)キーを押します。

MOD

3. 変調度の設定が赤くなります。

G INSTEK

MFG-2000 シリーズ ユーザーマニュアル

設定範囲	変調度	0%~120%
	初期値	100%

 ・ 注意
 変調度が 100%を超える場合には、出力は±5Vピーク(10kΩ負荷時)を超えることができません。
 す面の外部変調入力を使用する場合は±5Vに制限されています。最大変調振幅は+5V入力、最小変調振幅は-5V入力となります。

変調信号入力の選択

変調信号は内部信号に加え外部入力が使用できます。初期設定は内部 信号です。

CH2 AMPL DC Offse	FREQ 3.000 et 0.1	1.000000000 Vpp Phase 00 Vpc	kHz 0.0 °	Ampi	DCoffset
CHI AMPL DC Offse	FREQ 3.000 et 0.1	1.000000000 Vpp Phase 00 Vpc	kHz		
AM Dept AM Freq:	h: 100.0 % 100.000) Hz		Type: AM Source: INT Shape: Sine	
INT	E)	т			Return

ASK 変調(RF のみ)

ASK(振幅偏移)変調は送信データのビット列に対応して<u>搬送波の振幅</u>を 変化させることで送信データを送る方式です。ASK 変調はスイープとバ ーストが利用できません。先にスイープまたはバーストを動作させている 場合はスイープまたはバーストがオフになります。

ASK 変調の選択

ASK 変調を選択するとキャリアの周波数、振幅、オフセット電圧は設定を 引き継ぎます。.

パネル操作 1. MOD キーを押します。

MOD

ASK

2. ASK(F2)を押します。

G^w**INSTEK**

キャリア波形の選択

概要 キャリアは正弦波のみです。キャリアの選択の前に変 調の設定が必要です。 キャリアの選択 1. Waveform キーを押します。 (Waveform) 2. Sine(F1)で波形を選択します。 Sine

キャリア周波数の設定

設定できるキャリアの周波数は波形、モデルで異なります。初期値は 1kHzです。

パネル操作 1. FREQ/Rate キーを押します。

FREQ/Rate

 $\odot \odot \odot$

2. 周波数の表示が赤くなります。

 新移動と数字キー、ツマミを使 ○ ○ ○ ○ って周波数の値を設定します。 ○ ○ ○ ○ ○ ○

	4. 単位を uHz(Hz(F4), kH	(F2)、MHz(F3)、 z(F5)、MHz(F6)で ローロオー ~ 「MHz」
	設定します。	
Range	キャリア波形	キャリア周波数
	正弦波	1µHz~320MHz(max)
	初期値	1 kHz

ASK 振幅の設定

ASK 振幅の初期値は振幅 0.5V、内部変調、方形波、50%デューティです。

パネル操作	1. MOD キーを押します。	MOD
	2. ASK(F2)を押します。	ASK
	3. ASK Ampl(F2)を押します。	ASKAmpl

4. ASK Ampl の表示が赤くなります。

RF FREQ 1. AMPL 2.500 VPP	000000000 kH Phase 0	lz .0 °	VAAAA)	
DC Offset 0.000 Vpc			V V V V V	
ASK Ampl: 500.0 mVr	p	Sc	/pe: ASK ource: INT	
ASK Rate: 10.0000	Hz			
PULSE FREQ 1.	D00000000 kH	lz 🗛	$-\Lambda$	
AMPL 2.500 VPP	Phase 0	.0 °		
DC Offset 0.000 Voc		Am	pi	Ť
WIDTH 5	0.000 uSec	t		
Lead Edge	10 nSec			DCoffset
Trail Edge	10 nSec		I/FREC	≥—► ↓
dBm	mVRMS	VRMS	mVPP	VPP

5. 桁移動と数字キー、ツマミを使 ? ? ? ? って周波数の値を設定します。? ? ? ?

	6. dBm(F2)、mVRMS(F VRMS(F4)、mVPP(F VPP(F6)から単位を選 す。	3)、 5)、 訳しま ^{dBm} ~ ^{VPP}
設定範囲	ASK 振幅	0V~max
	初期値	0.5V

ASK レートの設定

変調を内部信号で行う場合の周波数を設定します。

パネル操作	1. MOD キーを押します。	MOD
	2. ASK(F2)、ASK Rate(F3)を押しま す。	ASK ASK Rate

3. ASK レートの表示が赤くなります。

RF FREQ 1.00000000 kHz	<u> </u>
AMPL 2.500 VPP Phase 0.0 °	<u> </u>
DC Offset 0.000 Voc	V V V V V
	Type: ASK
ASK Ampl: 500.0 mVpp	Source: INT
ASK Rate: 10.0000 Hz	
PULSE FREQ 1.00000000 kHz	Ā ∧
AMPL 2.500 Vpp Phase 0.0 °	
DC Offset 0.000 Voc	Ampi 7
WIDTH 50.000 uSec	±_/ \ \
Lead Edge 10 nSec	DCoffset
Trail Edge 10 nSec	I/FREQ → ↓
mHz Hz kHz MHz	Return

 $\odot \odot \odot$

 4. 桁移動と数字キー、ツマミを使 ⑦ ⑧ ⑨ って周波数の値を設定します。 ⑦ ⑨ ⑨ ① ② ⑨

	5. 単位を MHz(F1)、Hz(F2)、 kHz(F3)、MHz(F4)で設定しま す。	mHz ~ KHz
設定範囲	ASKレート周波数範囲	2MHz~1MHz
	初期値	100Hz

ASK 変調信号入力の選択

変調信号は内部信号に加え外部入力が使用できます。初期設定は内部 信号です。

パネル操作	1. MOD キーを押します。	MOD
	2. ASK(F2)キーを押します。	ASK
	3. Source(F1)キーを押します。	Source
	 INT(F1)、EXT(F2)キーで変調 信号を選択します。 	INT
	RF FREQ 1.000000000 kHz AMPL 2.500 Vpp Phase 0.0 ° DC Offset 0.000 Vpc ASK Ampl: 500.0 mVpp ASK Rate: 10.0000 Hz	Type: ASK Source: INT
	PHISE FREQ 1.000000000 KHz AMPL 2.500 Vpp Phase 0.0 ° DC Offset 0.000 Voc WIDTH 50.000 uSec Lead Edge 10 nSec Trail Edge 10 nSec	Ampl DCoffset

周波数変調(FM)

FM 変調波形は、キャリア波形と変調波形から生成されます。キャリア波形の瞬時周波数は、変調波形の大きさによって変化します。

MOD

FM

変調波形はチャンネル共通で設定されます。

FM 変調の選択

FM 変調を選択した場合、出力波形はキャリア周波数、出力振幅、オフセット電圧に依存します。

パネル操作 1. MOD キーを押します。

2. FM(F2)キーを押します。

キャリア波形の選択

概要	正弦波、方形波、 択できます。初期 選択できません。	パルス、ランプ波を 直は正弦波です。ノ	キャリアとして選 イズはキャリアに
パネル操作	1. Waveform +-	ーを押します。	Waveform
	2. Sine(F1)、Squ Pulse(F4)、Ra 形を選択します	are(F2)、 mp(F5)から波 📲 -。	Sine Ramp
設定範囲	キャリア波形	正弦波、方形波、	パルス、ランプ波

キャリア周波数の設定

FM 変調のキャリア周波数は、周波数偏差と等しいかそれ以上でなけれ ばいけません。周波数偏差をキャリア周波数より大きい値に設定した場 合、偏差は最大値に設定されます。キャリア波形の最大周波数は、選択 した波形に依存します。

- パネル操作
 1. FREQ/Rate キーを押します。
 2. 周波数の表示が赤くなります。
 3. 桁移動と数字キー、ツマミを使 ② ③ ③ って周波数の値を設定します。
 ④ ③ ④ ③ ① ③ ④
 - 4. 単位を uHz(F2)、MHz(F3)、 Hz(F4)、kHz(F5)、MHz(F6)で
 2010
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011
 2011</li

MHz

 $\odot \odot \odot$

設定範囲	キャリア波形	キャリア周波数
	正弦波	1µHz~320MH(max)
	方形波	1µHz~25MHz(max)
	三角波	1µHz~25MHz(max)
	ランプ波	1µHz~1MHz
	初期値	1kHz

FM 変調波形の選択

本器は変調波形に内部信号と外部入力信号を設定できます。内蔵波形 は正弦波、方形波、三角波、ランプ波(アップ、ダウン)から選択します。 初期値は正弦波です。

パネル操作	1. MOD キーを押	します。	MOD		
	2. FM(F2)、Shape(F4)を押しま FM す。 Shape				
	3. Sine(F1)、Squ Triangle(F3)、 DnRamp(F5) ます。	ıare(F2)、 UpRamp(F4)、 から波形を選択し	Sine DnRamp		
Range	方形波	50% デューテ	1		
	三角波	50%シンメトリ			
	アップランプ	100% シンメト	IJ		
	ダウンランプ	0% シンメトリ			

CH2 FF AMPL DC Offset	REQ 1.00 3.000 Vpp 0.00 Vpc	DOOOOOO kH Phase O	lz .0 °	∱ Ampi		DCoffset
CH4 cr	250 1.00	000000 64	17	٨		
AMPL DC Offset	3.000 VPP 0.00 Vpp	Phase		4	IVW	ALK
Type: FM FM Dev: 100.0 Hz Source: INT FM Freq: 100.000 Hz Shape: Sine						
Sine	Square	Triangle	UpRam	,	DnRamp	Return

FM 変調周波数の設定

内部変調波形の周波数は 2MHz ~20kHz の設定が可能です。

3. 変調周波数の設定が赤くなります。

CH2	FREQ	1.000000000	kHz	\mathbf{A}
AMPL	3.000	VPP Phase	0.0 °	
DC Offset	0.0)0 Vbg		Ampi
				DCoffset
				◀1/FREQ► ↓
CHI	FREQ	1.000000000	kHz	AAAAAAAA
AMPL	3.000	VPP Phase		
DC Offset	0.0	10 Vec		VVVVVVVVV
				Type: FM
FM Dev:	100.0) Hz		Source: INT
FM Freq:	100.00)0 Hz		Shape: Sine
mHz	H	z kHz		Return
				TOMIT

5	. MHz(F1)、Hz(F2)、kHz ら単位を選択します。	z(F3)か mHz ~ kHz
設定範囲	変調周波数	2MHz~20kHz
	初期値	100Hz

RF チャンネルの Sine-DDS の場合、変調周期(MOD Time)の設定となり、範囲は 5us~327.68ms です。

周波数偏移の設定

周波数偏差は、キャリア周波数と変調波からのピーク周波数偏移です。

3. 周波数偏移の設定が赤くなります。

CH2	FREQ	1.00	0000000	kHz		¥		
AMPL	3.000	Vpp	Phase	0.0	0			
DC Offs	et O.	00 Voc				Amp	1	/ †
						¥		
								DCoffset
							I/FRE	⊇—▶ ↓
CHI	FREQ	1.00	0000000	kHz		ſ	ATAA	ΛΛΛ
AMPL	3.000	Vpp	Phase				$\mathcal{W}\mathcal{W}\mathcal{W}$	UNN <i>k</i>
DC Offs	et O.	00 Voc					V V V V	K L V
						Ту	pe: FM	
FM Dev:	1 <u>0</u> 0.	0 Hz				So	urce: INT	
FM Freq:	100.0	DO H	z			Sh	ape: Sine	
uHz	m	Hz	Hz		kHz		MHz	Return
		-				_		

	5. 単位を uHz(F2)、 Hz(F4)、kHz(F5) 設定します。	MHz(F3)、 、MHz(F6)で ~
設定範囲	周波数偏移	DC~最高周波数
	初期値	100Hz

FM 変調信号入力の選択

変調信号は内部信号と外部入力を選択できます。初期値は内部信号です。

パネル操作	1. MOD キーを押します。	MOD
	2. FM (F2)、Source(F1)キーを押 します。	FM
	 INT(F1)、EXT(F2)キーで変調 信号を選択します。 	INT
外部変調 入力端子	リア パネルの MOD 入力端子に変 調信号を接続します。	
<u> 注意</u>	外部変調入力を選択した場合、変調 パネルの MOD 入力端子に入力され 号でコントロールされます。周波数備 の電圧に比例します。 変調信号の電圧が正の電圧で周波 で設定されたキャリア周波数+1/2 周 負の電圧を入力すると、周波数は減 1/2 周波数偏差の信号となります。C 周波数となります。	周波数は、背面 1る最大±5Vの信 差は、入力信号 数は増加し、+5V 1波数偏差となり、 少しキャリア波形- DV 近辺でキャリア

FSK 変調

FSK 変調は、2つのプリセット周波数(キャリア周波数、ホップ周波数)間 をシフトした信号です。シフトの状態は、内部信号または背面のトリガ入 力端子に入力した電圧レベルによって決定されます。FSK 変調を使用す る場合はスイープとバーストは使用できません。

FSK 変調の選択

FSK 変調を選択した場合、出力波形のキャリア周波数、振幅、オフセット 電圧は初期化されます。

パネル操作	1. MOD キーを押します。	MOD
	2. FSK (F3)キーを押します	FSK

CH2 FR AMPL CONSEL	REQ 1.000 3.000 Vpp 0.00 Vpc	000000 kH Phase O.	z 0 °	Ampl
CH1 FR AMPL COffset	IEQ 1.00 3.000 Vpp 0.00 Vpc)000000 kH Phase	z	
FSK Rate: Hop Freq: Source	10.0000 100.00000 Hop Freq	Hz 0 Hz FSK Rate		Source: INT

キャリア波形の選択

概要	正弦波、方形波、パルス、ランプ 択できます。初期値は正弦波です 選択できません。	波をキャリアとして選 ト。ノイズはキャリアに
パネル操作	1. Waveform キーを押します。	Waveform
	2. Sine(F1)、Square(F2)、 Pulse(F4)、Ramp(F5)から波 形を選択します。	Sine Ramp
設定範囲	キャリア波形 正弦波、方形	波、パルス、ランプ波

キャリア周波数の設定

キャリア波形の最大周波数は、選択した波形に依存します。初期値は 1kHzです。外部入力を選択した場合は、トリガ入力端子がLレベルでキ ャリア周波数、Hレベルでホップ周波数が出力されます。

パネル操作 1. FREQ/Rate キーを押します。

2. 周波数の表示が赤くなります。

G^wINSTEK

	3. 桁移動と数 ⁼ って周波数の	字キー、ツマミを使 D値を設定します。	$\begin{array}{c} \bigcirc \bigcirc \bigcirc \bigcirc \\ \bigcirc \bigcirc \bigcirc \bigcirc \\ \bigcirc \bigcirc \bigcirc \bigcirc \\ \bigcirc \bigcirc \bigcirc \bigcirc $	
	4. 単位を uHz(Hz(F4)、kH: 設定します。	(F2)、MHz(F3)、 z(F5)、MHz(F6)で	uHz	MHz
設定範囲	キャリア波形	キャリア周波数		
	正弦波	1µHz~320MHz	(max)	
	方形波	1µHz~25MHz(ı	max)	
	ランプ波	1µHz~1MHz		
	パルス波	1µHz~25MHz(ı	max)	
	初期値	1kHz		

ホップ周波数の設定

ホップ周波数の初期値は 100Hz です。内部の方形波のデューティは 50%です。外部入力を選択した場合は、トリガ入力端子が L レベルでキ ャリア周波数、H レベルでホップ周波数が出力されます。

パネル操作	1. MOD キーを押します。	MOD
	2. FSK(F3)、Hop Freq(F2)を押し ます。	FSK Hop Freq
	3. ホップ周波数の表示が赤くなります	0

CH2 FREQ AMPL 3.00	1.00000000 10 VPP Phas 10.00 Vps)0 kHz e 0.0 °	Amp	
			* _	DCoffset
CH1 FREQ AMPL 3.00 DC Offset	1.00000000 10 VPP Phas 0.00 Vpc)O kHz e	_	
FSK Rate:	10.0000 Hz		Ty So	rpe: FSK urce: INT
uHz	mHz H	z	kHz	MHz Return

 4. 桁移動と数字キー、ツマミを使 ○ ○ ○ ○ って周波数の値を設定します。 ○ ○ ○

	5. 単位を uHz(F2)、I Hz(F4)、kHz(F5)、 設定します。	MHz(F3)、 , MHz(F6)で ~
設定範囲	キャリア波形	キャリア周波数
	正弦波	1µHz~320MHz(max)
	方形波	1µHz~25MHz(max)
	ランプ波	1µHz~1MHz
	パルス波	1µHz~25MHz(max)
	初期値	100Hz

FSK レートの設定

FSK 変調を内部信号で行う場合の周波数を設定します。

パネル操作	1. MOD キーを押します。	MOD
	2. FSK(F3)、FSK Rate(F3)を押 します。	FSK FSK Rate

3. FSK レートの表示が赤くなります。

CH2 FREQ 1.000000000 k AMPL 3.000 Vpp Phase DC Offset 0.00 Vpc	Hz 0.0 ° Ampl DCoffset -1/FREQ
CH1 FREQ 1.000000000 k AMPL 3.000 Vpp Phase DC DC </th <th>Hz Type: FSK Source: INT</th>	Hz Type: FSK Source: INT
 mHz Hz Hz KHz 4. 桁移動と数字キー、ツマ って周波数の値を設定し 	Return ミを使 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5. 単位を MHz(F1)、Hz(F2 kHz(F3)で設定します。	2), mHz ~ kHz
FSKレート	2MHz~1MHz
初期値	10Hz

<u>!</u>注意

設定範囲

外部変調入力を使用する場合、FSK レートは無視されます。

FSK 変調信号入力の選択

変調信号は内部信号に加え外部入力が使用できます。初期設定は内部 信号です。外部変調信号端子はトリガ入力となります。

パネル操作	1. MOD キーを押します。	MOD
	2. FSK(F3)、Source(F3)を押しま す。	FSK Source

EXT

INT

INT(F1)、EXT(F2)キーで変調
 信号を選択します。

外部入力の極性は変更できません。

CH2 FREQ 1.00000000 AMPL 3.000 VPP Phase	kHz	
DC Offset 0.00 Voc		DCoffset
CHI FREQ 1.00000000	kHz	$\land \land \land \land \land \land \land$
AMPL 3.000 VPP Phase		$\Delta / \Delta MAAA$
DC Offset 0.00 Voc		
	Т	ype: FSK
FSK Rate: 10.0000 Hz	S	ource: INT
Hop Freq: 100.000000 Hz		
INT		Return

位相変調(PM)

位相変調波形は、キャリア波形と変調波形から生成されます。キャリア 波形の位相偏移は、変調波形の電圧に比例して基準位相値から偏移し ます。変調波形はチャンネル共通で設定されます。

位相変調の選択

PM 変調を選択した場合、出力波形はキャリア周波数、出力振幅、オフセット電圧に依存します。.

パネル操作 1. MOD キーを押します。

РM

2. PM(F4)キーを押します。

キャリア波形の選択

概要	正弦波、方形波、 択できます。初期 ⁴ 選択できません。	パルス、ランプ波る 値は正弦波です。	をキャリアとして選 ノイズはキャリアに
パネル操作	1. Waveform キー	ーを押します。	Waveform
	2. Sine(F1)、Squ Pulse(F4)、Ra 形を選択します	uare(F2)、 amp(F5)から波 ⁺ 。	Sine Ramp
設定範囲	キャリア波形	正弦波、方形波、	パルス、ランプ波

キャリア周波数の設定

キャリア波形の最大周波数は、選択した波形に依存します。初期値は 1kHzです。

パネル操作 1. FREQ/Rate キーを押します。

	2. 周波数の表示が赤くな	ります。
	3. 桁移動と数字キー、ツラ って周波数の値を設定	マミを使 します。 ① ② ② ② ② ③ ③ ④ 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
	4. 単位を uHz(F2)、MHz Hz(F4)、kHz(F5)、MH 設定します。	(F3)、 z(F6)で <u>uHz</u> ~ MHz
設定範囲	キャリア波形	キャリア周波数
	正弦波	1µHz~320MH(max)
	方形波	1µHz~25MHz(max)
	パルス	1µHz~25MHz(max)
	ランプ波	1µHz~1MHz
	初期値	1 kHz

PM 変調波形の選択

本器は変調波形に内部信号と外部入力信号を設定できます。内蔵波形 は正弦波、方形波、三角波、ランプ波(アップ、ダウン)から選択します。初 期値は正弦波です。

G≝INSTEK

MFG-2000 シリーズ ユーザーマニュアル

初期値

方形波	50% Duty Cycle
アップランプ	100% シンメトリ
三角波	50% シンメトリ
ダウンランプ	0% シンメトリ

CHZ FF	REQ 1.00	0000000 kl	Hz	\mathbf{F}
AMPL	3.000 Vpp	Phase ().0 °	
DC Offset	0.00 Voc			Ampi
				DCoffset
CHI FF	REQ 1.00	0000000 k	Iz	ΛΛΛΑΛΛΛΛ
AMPL	3.000 VPP			
AMPL DC Offset	3.000 VPP 0.00 Vpc			VVVWUK
AMPL DC Offset	3.000 Vpp 0.00 Vpc			Type: PM
AMPL DC Offset PM Dev:	3.000 VPP 0.00 Vpc 180.0 °			Type: PM Source: INT
AMPL DC Offset PM Dev: PM Freq:	3.000 Vpp 0.00 Vpc 180.0 ° 100.000 H	z		Type: PM Source: INT Shape: Sine

PM 変調周波数の設定

内部変調波形の周波数は 2MHz ~20kHz の設定が可能です。

パネル操作	1. MOD キーを押します。	MOD
	2. PM (F4)、FM Freq(F3)を押し ます。	PM PM Freq

3. 変調周波数の設定が赤くなります。

CH2 FREQ 1.0000000000 kHz AMPL 3.000 VPp Phase 0.0 ° DC Offset 0.00 Voc	Ampl
AMPL 3.000 Vpp DC Offset 0.00 Vpc	TUTAL
PM Dev: 180.0 ° PM Freg: 100.000 Hz	Type: PM Source: INT Shape: Sine
mHz Hz kHz	Return

	5. MHz(F1)、Hz(F2 ら単位を選択しま	と)、kHz(F3)か mHz ~ kHz す。
設定範囲	変調周波数	2MHz~20kHz
	初期値	100Hz

RF チャンネルの Sine-DDS の場合、変調周期(MOD Time)の設定となり、範囲は 5us~327.68ms です。

位相偏移の設定

位相偏差は、キャリア周波数と変調波からのピーク位相偏移です。

- パネル操作 1. MOD キーを押します。 MOD 2. PM(F4)、Freq Dev(F2)キーを PM 押します。 Phase Dev
 - 3. 位相偏移の設定が赤くなります。

CFI2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.00 Voc	Ampl
	∢ —1/FREQ — ▶ ↓
CH1 FREQ 1.000000000 kHz AMPL 3.000 VPp	ATTAMAA
PM Dev: <u>180.0</u> ° PM Freq: 100.000 Hz	Type: PM Source: INT Shape: Sine
Degree	Return

 4. 桁移動と数字キー、ツマミを使 ⑦(って位相偏移の値を設定しま ⑦(す。 ①)

	\bigcirc
 ○ ○ ○ 	••

 5. Degree(F1)を押します。
 Degree

 設定範囲
 位相偏移量
 0~360 度

 初期値
 180 度

PM 変調信号入力の選択

変調信号は内部信号と外部入力を選択できます。初期値は内部信号です。

パネル操作	6. MOD キーを押します。	MOD
	7. PM (F4)、Source(F1)キーを押 します。	PM Source
	8. INT(F1)、EXT(F2)キーで変調 信号を選択します。	INT
外部変調 入力端子	MOD 入力端子に変調信号を接続 します。	

外部変調入力を選択した場合、変調周波数は、背面 パネルの MOD 入力端子に入力される最大±5V の信 号でコントロールされます。位相偏差は、入力信号の 電圧に比例します。

+5V で基準位相となり、電圧が下がるにしたがって位相も減少します。

CFI2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.00 Voc	Ampl DCoffset
	∢ —1/FREQ — ▶ ↓
CF11 FREQ 1.000000000 kHz AMPL 3.000 Vpp	AVAAAAA
PM Dev: 180.0 ° PM Freq: 100.000 Hz	Type: PM Source: INT Shape: Sine
Phase Dev PM Freq Shape	Return

PSK 変調(RF のみ)

PSK 変調は変調波によってキャリア波形の位相を変更した変調です。

PSK 変調の選択

PSK 変調を選択した場合、出力波形のキャリア周波数、振幅、オフセット 電圧は初期化されます。

パネル操作 1. MOD キーを押します。

2. PSK (F6)キーを押します

RF FREQ 1.00000000 kHz	ΛΛΛΛΛΛΛΛ
AMPL 2.500 Vpp Phase 0.0 °	MAMMANA.
DC Offset 0.000 Voc	<u> </u>
	Type: PSK
PSK Phase: 0.0 °	Source: INT
PSK Rate: 10.0000 Hz	
PULSE FREQ 1.00000000 kHz	▲ ∧
AMPL 2.500 VPP Phase 0.0 °	<u>, , </u>
DC Offset 0.000 Voc	Ampi
WIDTH 50.000 uSec	↓ / \
Lead Edge 10 nSec	DCoffset
Trail Edge 10 nSec	∢ —1/FREQ— → ↓
INT EXT	Return

キャリア波形の選択

概要	キャリアは正弦波のみ選択できます	f 。
パネル操作	1. Waveform キーを押します。	Waveform
	2. Sine(F1)キーを押します。	Sine
設定範囲	キャリア波形 正弦波	

キャリア周波数の設定

キャリア波形の最大周波数は、選択した波形に依存します。初期値は 1kHzです。

- パネル操作 1. FREQ/Rate キーを押します。 2. 周波数の表示が赤くなります。
 - 3. 桁移動と数字キー、ツマミを使 ⑦ ③ ④ の
 って周波数の値を設定します。 ④ ④ ④ ① ①
 ① ③ ④
 ① ③ ④
 ④ ④ ① ④

	4. 単位を uHz(F2)、 Hz(F4)、kHz(F5 設定します。	、MHz(F3)、)、MHz(F6)で uHz ~ MHz
設定範囲	キャリア波形	キャリア周波数
	正弦波	1µHz~320MHz(max)
	初期値	1kHz

PSK 変調位相量の設定

位相量の初期値は180°、変調波形はデューティ50%の方形波です。

- パネル操作 1. MOD キーを押します。 2. PSK(F6)、PSK Phase(F2)キ Psk
 - ーを押します。

3. 位相の設定が赤くなります。

4. 桁移動と数字キー、ツマミを使 ⑦ ③ ④ って位相偏移の値を設定しま ③ ④ ④ す。

PSK Phase

5. Degree(F1)を押します。

Degree

G^WINSTEK

MFG-2000 シリーズ ユーザーマニュアル

設定範囲	位相偏移量	0~360度
	初期値	180 度

PSK レートの設定

PSK 変調を内部信号で行う場合の周波数を設定します。

パネル操作 1. MOD キーを押します。

初期値

2. PSK(F6)、PSK Rate(F3)を押 します。

MOD

3. PSK レートの表示が赤くなります。

RF FREQ 1.000000000 kHz AMPL 2.500 Ypp Phase 0.0 ° DC Offset 0.000 Yuc Yuc PSK Phase: 0.0 ° PSK Rate: 10.0000 Hz PSK Rate: 10.0000 Hz PSK Phase: 0.0 ° DC Offset 0.0000 Vpp Phase: 0.0 ° DC Offset 0.0000 Vpo Phase: 0.0 ° DC Offset 0.0000 Voc ViDTH 50.000 uSec Lead Edge 10 nSec Trail Edge 10 nSec mHz Hz KHz MHz MHz MHz MHz	Type: PSK Source: INT
4. 桁移動と数字キー、ツマミを使って周波数の値を設定します。	
5. 単位を MHz(F1)、Hz(F2)、 kHz(F3)で設定します。	mHz ~ kHz
PSKレート 2MHz~	-1MHz

10Hz

設定範囲

外部変調入力を使用する場合、FSK レートは無視されます。

PSK 変調信号入力の選択

変調信号は内部信号に加え外部入力が使用できます。初期設定は内部 信号です。外部変調信号端子はトリガ入力となります。

RF	FREQ	1.0)00000000 kHz	ΑΑΑΑΑΑΑΑ
AMPL	2.500	Vpp	Phase 0.0 °	
DC Offse	et 0.00	O Voc		<u> </u>
				Type: PSK
PSK Phas	se: 0.0	۰		Source: INT
PSK Rate	: 10.	.0000	Hz	
PULSE	FREQ	1.0)000000000 kHz	A A
AMPL	2.500	Vpp	Phase 0.0 °	_! . / \
DC Offse	et 0.00	O Voc		
WIDTH		50).000 uSec	
Lead Edg	e		10 nSec	DCoffset
Trail Edg	e		10 nSec	
INT		хт		Return

パルス幅変調

注意

パルス幅変調は変調入力の瞬時電圧でパルスの時間幅を指定します。 スイープやバーストを含めた他の変調機能は同時に使うことができません。

パルス幅変調の選択

パルス幅変調を選択した場合、出力波形はキャリア周波数、変調周波数、 振幅、オフセット電圧に依存します。

パネル操作	1.	MOD キーを押します。	MOD
	2.	PWM(F6)キー、Source(F1)を 押します。	PWM Source
	3.	INT(F1)、EXT(F2)キーで変調 信号を選択します。	INT
		CH2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.00 Vec	Ampl DCoffset
		CH1 FREQ 1.00000000 kHz AMPL 3.000 Vpp Phase DC Offset 0.00 Voc PWM Duty: 50.0 % PWM Freq: 20.000000 kHz	Type: PWM Source: INT Shape: Sine
		Source DUTY PWM Freq Shape	Return

パルス幅変調はキャリア波形に方形波を使用します。その他の波形は使 用できません。他の波形をキャリアに指定した場合はエラーとなり、メッセ ージが表示されます。

キャリア周波数の設定

キャリア周波数の範囲は方形波の出力範囲となります。初期値は 1kHz です。

PWM 変調波形の選択

本器は変調波形に内部信号と外部入力信号を設定できます。内蔵波形 は正弦波、方形波、三角波、ランプ波(アップ、ダウン)から選択します。初 期値は正弦波です。す。

:	2. PWM (F6)、Shape(F4 ます。)を押し PWM Shape
:	3. Sine(F1)、Square(F2) Triangle(F3)、UpRam DnRamp(F5)から波形 ます。	、 p(F4)、 を選択し ^{Sine} ~ ^{DnRamp}
初期値	方形波	50% デューティ
	三角波	50%シンメトリ
	アップランプ	100% シンメトリ
	ダウンランプ	0% シンメトリ
	CE12 FREQ 1.000000000 AMPL 3.000 Vpp Phase DC offset 0.00 Vpc	KHZ 0.0 ° Ampl ↓ DCoffset
	CH1 FREQ 1.000000000 AMPL 3.000 Vpp Phase DC Offset 0.00 Vpc	kHz
	PWM Duty: 50.0 % PWM Freq: 20.000000 kHz	Type: PWM Source: INT Shape: Sine
	Sine Square Triangle	e UpRamp DnRamp Return

PWM 変調周波数の設定

パネル操作
 1. MOD キーを押します。
 2. PWM (F6)、FM Freq(F3)を押します。
 3. 変調周波数の設定が赤くなります。

	5. MHz(F1)、Hz(F ら単位を選択しま	2)、kHz(F3)か ます。
設定範囲	変調周波数	2MHz~20kHz
	初期値	20kHz

変調波デューティサイクルの設定

出力波形のデューティサイクルをパーセントで設定します。

- パネル操作 1. MOD キーを押します。 MOD 2. PWM (F6)、Duty(F2)を押しま PWM す。 Duty
 - 3. デューティの表示が赤くなります。

	CH2 FREC AMPL 3.00 DC Offset	a 1.000000000 DO VPP Phase 0.00 Vpc	kHz 0.0 °	DCoffset
	CH1 FREC AMPL 3.0 DC Offset PWM Duty: 50 PWM Freq: 20.0	2 1.00000000 D0 VPP Phase 0,00 Vbc 0,00 kHz	kHz	Type: PWM Source: INT Shape: Sine
	桁移動と数 ってデュー す。	ሏ字キー、ツ ・ティの値を言	マミを使 殳定しま	Image: Constraint of the second se
	%(F1)を押 す。	して単位を	設定しま	%
設定範囲	デューティ		0% ~ '	100%
	初期値		50%	

PWM 変調信号入力の選択

変調信号は内部信号に加え外部入力が使用できます。初期設定は内部 信号です。外部変調信号端子はトリガ入力となります。

パネル操作	1. MOD キーを押します。	MOD
	2. PWM(F6)、Source(F1)キーを 押します。	PWM Source
	 INT(F1)、EXT(F2)キーで変調 信号を選択します。 	INT EXT

外部変調 入力端子	MOD 入力端子に変調信号を接続します。
 注意	外部変調入力を選択した場合、変調幅は、背面パネ ルの MOD 入力端子に入力される最大±5V の信号で コントロールされます。デューティが 100%の場合、 +5V 入力で最大パルス幅、+5V で最小パルス幅とな ります。
	CH2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 * DC Offset 0.00 Vpc * DCoffset DCoffset CH1 FREQ 1.000000000 kHz * * DCoffset AMPI 3.000 Vpp Phase * * *

SUM 変調

加算変調はキャリア波形に変調波形の電圧を加算します。出力波形は の振幅は、キャリア波で設定した振幅のパーセンテージで追加します。 バーストやスイープなど他の変調方式と同時に使用できません。

SUM 変調の選択

SUM 変調を選択した場合、出力波形はキャリア周波数、出力振幅、オフ セット電圧に依存します。

パネル操作	1. MOD キーを押します。	MOD
	2. SUM(F5)キーを押します。	SUM
	CF12 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.00 Vpc	Ampl
	CH1 FREQ 1.000000000 kHz AMPL 3.000 Vpp DC DC Offset 0.00 Vpc SUM Ampl: 50.00 % SUM Freq: 100.000 Hz C	AAAAAAAAAA Type: SUM Source: INT Shape: Sine
	Source SUM Ampl SUM Freq Shape	Return

キャリア波形の選択

概要

キャリアで使用できる波形は正弦波です。

パネル操作

	1. Waveform キーを	押します。	Waveform
	2. 正弦波(F1)キーを	を押します。	Sine
設定範囲	キャリア波形	正弦波	

キャリア周波数の設定

キャリア波形の最大周波数は、選択した波形に依存します。初期値は 1kHzです。

パネル操作 1. FREQ/Rate キーを押します。

	2. 周波数の表示が赤くな	います。
	3. 桁移動と数字キー、ツ って周波数の値を設定	マミを使 ごします。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
	4. 単位を uHz(F2)、MH: Hz(F4)、kHz(F5)、MH 設定します。	z(F3)、 Hz(F6)で ^{ーー} ー ~ ^{ーー}
設定範囲	キャリア波形	キャリア周波数
	正弦波	1µHz~60MH(max)
	方形波	1µHz~25MHz(max)
	パルス波	1µHz~25MHz(max)
	ランプ波	1µHz~1MHz
	初期値	1 kHz

SUM 変調波形の選択

本器は変調波形に内部信号と外部入力信号を設定できます。内蔵波形 は正弦波、方形波、三角波、ランプ波(アップ、ダウン)から選択します。初 期値は正弦波です。

パネル操作	1. MOD キーを持	甲します。	MOD
	2. SUM (F5)、S す。	hape(F4)を押しま	PM Shape
初期値	方形波	50% Duty Cycle	
	アップランプ	100% シンメトリ	
	三角波	50% シンメトリ	
	ダウンランプ	0% シンメトリ	

CH2 FF AMPL DC Offset	3EQ 1.00 3.000 Vpp 0.00 Vpc	0000000 kl Phase ()	1z 1.0 °	≜ Ampt∠	\frown	
AMPL 3.000 VPP ATTACASE DC Offset 0.00 Vpc						
Type: SUM SUM Ampl: 50.00 % SUM Freq: 100.000 Hz Shape:						
Sine	Square	Triangle	UpRam	3 D	nRamp	Return

SUM 変調周波数の設定

The 内部変調波形の周波数は 2MHz ~20kHz の設定が可能です。

3. 変調周波数の設定が赤くなります。

CFI2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.00 Vpc	Ampl
Chi FREQ 1.000000000 kHz AMPL 3.000 Vpp DC Offset 0.00 Vpc	AAAAAAAAA
SUM Ampl: 50.00 % SUM Freq: 100.000 Hz	Type: SUM Source: INT Shape: Sine
mHz Hz kHz	Return

- 5. MHz(F1)、Hz(F2)、kHz(F3)か ら単位を選択します。 変調周波数 2MHz~20kHz
- 設定範囲 変調周波数 2MHz~20kHz 初期値 100Hz

SUM 振幅の設定

SUM の振幅は、キャリア信号に加算される信号(キャリアに対するパー セントで)のオフセット量です。

- パネル操作 1. MOD キーを押します。
 - SUM (F5)、SUM Ampl(F2)キ 一を押します。

MOD

3. 変調振幅の表示が赤くなります。

	CFI2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.00 Voc	Ampl DCoffset
	CH1 FREQ 1.000000000 kHz AMPL 3.000 VPp DC Offset 0.00 Voc SUM Ampl: 50.00 % SUM Freq: 100.000 Hz SUM Freq: 100.000 Hz	AAAAAAAAAAA Type: SUM Source: INT Shape: Sine
4.	₩ 桁移動と数字キー、ツマミを使 って振幅の値を設定します。	Return ⑦ ① ① ① ③ ③ ② ②
5.	%(F1)を押して単位を設定しま す。	

G^W**INSTEK**

MFG-2000 シリーズ ユーザーマニュアル

設定範囲	振幅量	0% ~ 100%
	初期値	50%

SUM 変調信号入力の選択

変調信号は内部信号と外部入力を選択できます。初期値は内部信号です。

パネル操作	6. MOD キーを押します。	MOD
	7. SUM(F5)、Source(F1)キーを 押します。	SUM Source
	 INT(F1)、EXT(F2)キーで変調 信号を選択します。 	INT EXT
外部変調 入力端子	MOD 入力端子に変調信号を接続 します。	MOD AV
注意	外部変調入力を選択した場合、変調 ネルの MOD 入力端子に入力される でコントロールされます。変調振幅を は、+5V 入力でキャリアの振幅、-5V ります。	振幅は、背面パ 最大±5V の信号 100%とした場合 で最小振幅とな
	CF12 FREQ 1.000000000 kHz AMPL 3.000 VPP Phase 0.0 ° DC Offset 0.00 Vpc	

AMPL 3.000 Vpp DC Offset 0.00 Vee SUM Ampl: 50.00 % SUM Freq: 100.000 Hz INT EXT	AMPL 3.000 Vpp DC Offset 0.00 Vpc SUM Ampl: 50.00 % SUM Freq: 100.000 Hz INT EXT	AMPL 3.000 Vpp DC Offset 0.00 Vpc SUM Ampl: 50.00 % SUM Freq: 100.000 Hz INT EXT				0000000	
DC Offset 0.00 Vrc SUM Ampl: 50.00 % SUM Freq: 100.000 Hz	DC Offset 0.00 Voc SUM Ampl: 50.00 % SUM Freq: 100.000 Hz INT EXT	DC Offset 0.00 Vpc SUM Ampl: 50.00 % SUM Freq: 100.000 Hz	AMPL	3.000	Vpp		
SUM Ampl: 50.00 % SUM Freq: 100.000 Hz INT EXT	SUM Ampl: 50.00 % SUM Freq: 100.000 Hz INT EXT	SUM Ampl: 50.00 % SUM Freq: 100.000 Hz	DC Offset	0.00	Voc		
SUM Ampl: 50.00 % SUM Freq: 100.000 Hz INT EXT	SUM Ampl: 50.00 % SUM Freq: 100.000 Hz INT EXT	SUM Ampl: 50.00 % SUM Freq: 100.000 Hz INT EXT					
SUM Freq: 100.000 Hz	SUM Freq: 100.000 Hz	SUM Freq: 100.000 Hz	SUM Ampl:	50.0	0 %		
INT	INT	INT	SUM Freq:	100.0	00 I	Hz	
IN I EX I							
				-7	K I		

AAA

Type: SUM Source: INT Shape: Sine

Return

本器は正弦波、方形波、ランプ波でスイープ機能が使用できます。バー スト機能や変調機能との同時使用はできません。

開始周波数から終了周波数を指定時間で遷移します。変化曲線は直線 と Log が指定できます。開始と終了の周波数で増加・減少を指定します。 単発スイープではトリガによる開始を利用できます。

スイープ動作の選択

スイープボタンはスイープ出力の設定を行います。初 めて利用する場合は初期の状態設定となります。

開始周波数、終了周波数の設定

スタート周波数とストップ周波数は、上限と下限スイープリミットで定義されます。スイープは、スタート周波数からストップ周波数までサイクル設定回数スイープします。スイープは、位相が連続した全周波数範囲にわたってスイープ可能です。

3. 開始または終了の周波数の表示が明るくなりま す。

終了初期値 1kHz

低い周波数から高い周波数へスイープするには、開 始周波数を終了周波数より小さく設定してください。 高い周波数から低い周波数へスイープするには、開 始周波数を終了周波数より大きく設定してください。 マーカ信号がオフの場合、SYNC(同期)信号はデュー ティー比が50%の方形波です。スイープのスタート時 にSYNC信号はローレベル(TTL論理)で周波数の 中間でハイレベル(TTL論理)になります。SYNC信号 の周波数は、スイープ時間と同じです。 マーカ信号がオンのときは、スイープ信号のスタート時 にはハイレベル(TTL論理)、マーカ設定値でローレベ ル(TTL論理)になります。SYNC信号は、トリガ端子

に出力されます。

センター周波数、周波数スパンの設定

スイープの上限と下限をセンター周波数と周波数スパンで設定します。

- パネル操作 1. SWEEP キーを押します。 2. More (F6) キーを押します。 3. スパンまたはセンターを Span (F1)または Center (F2)キーで 設定します。
 - Span(スパン)または Center(センター)が波形表 示エリアで明るくなります。

	5.	桁移動と数字キー。 って周波数の値を	、ツマミを使 設定します。	$\begin{array}{c} \hline 0 & \hline 0 & \hline 0 \\ \hline 0 & \hline 0 & \hline 0 \\ \hline 0 & \hline 0 & \hline 0 \\ \hline 0 & \hline 0 & \hline 0 \\ \hline \end{array}$	
	6.	単位を uHz(F2)、N Hz(F4)、kHz(F5)、 設定します。	/Hz(F3)、 MHz(F6)で	uHz ~	MHz
周波数範囲		正弦波	1µHz~320N	MHz または	最大
(絶対値)		方形波	1µHz~25M	Hz または量	 長大
		パルス波	1µHz~25M	Hz または聞	 長大
		ランプ波	1µHz~1MH	z	
		センター初期値	550Hz		
_		スパン初期値	900Hz		

/!\注意

低い周波数から高い周波数へスイープするには、スパ ンを正の値で設定します。高い周波数から低い周波数 へスイープするには、スパン周波数を負値に設定して ください。

マーカ信号がオフの場合、SYNC(同期)信号はデュー ティー比が 50%の方形波です。スイープのスタート時 に SYNC 信号はローレベル(TTL 論理)で周波数の 中間でハイレベル(TTL 論理)になります。SYNC 信号 の周波数は、スイープ時間と同じです。 マーカ信号がオンのときは、スイープ信号のスタート時 にはハイレベル(TTL 論理)、マーカ設定値でローレベ ル(TTL 論理)になります。SYNC 信号は、トリガ端子 に出力されます。 スイープモードの選択

スイープモードは、直線(linear)または対数(logarithmic)スイープの選択に使用します。

		Linear Log		Return
		DC Offset 0.000 Voc Center: 550.000000 Hz Span: 900.000000 Hz Marker:	Type: Sweep Lir Source: INT Trigger Out: Rise	near e
		CH1 Sweep Time: 1.000 SEC	ΛΛΛΑΑ	AAT
			-1/FREG	
		GH2 FREQ 1.000000000 KHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.000 Vpc	Ampi	
		戻ります。		
	4.	Return (F6)キーでメニューへ	Return	
		するには Linear (F1)キーまた は Log (F2)キーを押します。		
	3.	直線または対数スイープを選択	Linear	Log
	2.	Type (F2) キーを押します	Туре	
パネル操作	1.	SWEEP キーを押します	Sweep	

スイープタイムの設定

スイープ時間は、スタートからストップ周波数までの時間を設定します。ス テップ時間により適切なステップ時間が選択されます。

パネル操作 1. SWEEP キーを押します。

C	Sweep	
Ć		ノ

- 2. SWP Time (F5) キーを押しま swp Time す
- 3. スイープ時間(Sweep Time)パラメータが波形表 示エリアで明るくなります。

マーカー周波数

マーカーは設定された周波数でトリガ出力にLレベルのパルスを出力します。初期値は550Hzとなります。

	CH2 FR AMPL 3. DC Offset	IEQ 1.00 000 Vpp 0.000 Vpc)0000000 kF Phase 0	lz .0 * 		DCoffset
	CH Sv AMPL 3. DC Offset Center: Span: Marker:	veep Time: .000 Vpp 0.000 Vpc 550.00000 900.000000 550.00000	1.000 SEC 00 Hz Hz 00 Hz		Type: Sweep Li Source: INT Trigger Out: OF	HAAAA near F
	uHz	mHz	Hz	kHz	MHz	Return
7. 木	行移動と	数字キー	-、ツマミ	を使	000	

 $\bigcirc \bigcirc \bigcirc \bigcirc$

 $\odot \odot \odot$

uHz

F 1

MHz F 5

8.	単位を uHz(F2)、MHz(F3)、
	Hz(F4)、kHz(F5)、MHz(F6)で
	設定します。

設定範囲	正弦波	1µHz~320MHz または最大
	方形波	1µHz~25MHz または最大
	パルス波	1µHz~25MHz または最大
	ランプ波	1µHz~1MHz
	初期値	550Hz

スイープモードのトリガソース

スイープモードではトリガ待ちにトリガを受付けるとスイープを開始します。 トリガ待ちは開始周波数が出力されます。トリガソースの初期値は内部 です。

パネル操作	1. SWEEP キーを押します	Sweep
	2. Source(F1)を押します。	Source
	3. Internal (F1)、External(F2)、 Manual (F3)からトリガソースを 選択します。	INT ~ Manual
	4. Return (F6)キーでメニューへ 戻ります。	Return
<u>!</u> 注意	内部ソースを使用すると、スイープタ 連続したスイープをします。	マイム設定を使用し
	外部ソースを使用した場合、スイー (TTL)が背面パネルのトリガ入力端 びに実行されます。トリガ周期は、必 1msを足した時間と等しいか、それ いけません。	プはトリガパルス 子に入力されるた なずスイープ時間に より大きくなければ
	5. Manual(手動)を選択した場合 は Trigger(F1)キーでスイープ を開始します。	Trigger

Clife FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 DC Offset 0.000 Vpc	• Ampl ↓ DCoffset
CH1 Sweep Time: 1.000 SEC AMPL 3.000 Vpp DC Offset 0.000 Vpc	
Center: 550.000000 Hz Span: 900.000000 Hz Marker: 550.000000 Hz	Type: Sweep Linear Source: INT Trigger Out: OFF
INT EXT Manual	Return

バーストモード

バーストモードは指定されたサイクル数のバースト波形を発生することが できます。波形は正弦波、方形波、三角波、パルス波、ランプ波形をサポ ートしています。

バーストモードの選択

バーストモードを選択すると、任意の変調、スイープモ ードは自動的に無効になります。何も設定されていな い場合、出力振幅、オフセット、および周波数は初期 設定値が使用されます。

バーストモード

バーストモードは、N サイクルモードまたはゲートモードを使用して設定します。N サイクル/トリガモードは、トリガ(内部/外部/手動)を受信するたびに、指定した数の波形サイクル(バースト)を出力します。バースト出力後、次のバースト信号を出力するまでトリガを待ちます。

N サイクルの初期設定は、バーストモードです。トリガモードは、内部、外部またはマニュアルトリガを選択できます。

ゲートモードは、設定したサイクル数の代わりに、背面パネルの TRIG 入 カ端子に入力されたトリガ入力信号でバーストのオンまたはオフをします。 TTL ハイのとき、波形は連続して出力されます。トリガ入力信号が TTL ローになると信号が出力されます。波形は最後の波形の周期が完了した 後に出力を停止します。出力の電圧レベルは、バースト波形の開始位相 のときと同じ電圧になり、再度トリガ信号がハイになるのを待ちます。

Burst

Geinstek		MFG-2000	シリーズユ・	ーザーマニュアル
バーストモード	バースト カウント	バースト 周期	位相	トリガソース
トリガ(内部)	可能	可能	可能	内部
トリガ(外部)	可能	不可	可能	外部
ゲートパルス(外部)	不可	不可	可能	不可
<u>!</u> 注意	ゲートモードで びトリガソース トリガソースは	は、バーストカウ は無視されます。 、外部トリガ信号	ント、バース のみになりま	トサイクルおよ ミ す。
パネル操作	1. Burst +-	ーを押します。		Burst

 N Cycle (F1)キーまたは Gate (F2)キーを選択します。

N Cycle	Gate

バースト周波数

N サイクルモードでは、波形の周波数、バースト波形の繰り返しレートを 設定します。N サイクルモードのバーストは、設定周波数を設定サイク ル数だけ出力します。ゲートモードでは、波形はトリガ信号が TTL ハイの 間、出力します。バーストモードは、正弦波、方形波、三角波、ランプ波形 をサポートしています。

設定範囲	周波数(正弦波)	1µHz~60MHz(または最大)
	周波数(方形波)	1µHz~25MHz(または最大)
	周波数(ランプ波)	1µHz~1MHz
	初期値	1kHz
<u>!</u> 注意	バースト周期は N サ の周波数と同じでは。	・イクルモード間の時間です。波形 ありません。

バーストサイクル・バーストカウント

バーストサイクル(バーストカウント)は、バースト波形の出力するサイク ル数を定義します。バーストサイクルは、N-サイクルモード(内部、外部ま たは手動ソース)でのみ使用します。バーストサイクルの初期設定値は1 です。

パネル操作	1. Burst キーを押します。	Burst
	2. N Cycle (F1)キーを押します。	N Cycle
	3. Cycle (F1)キーを押します。	Cycles

4. サイクル数の設定値が赤くなります。

CH2 AMPL	FREQ 3.000	1.00 Vpp	0000000 Phase	kHz 0.0	0	1 Amol		
DC Offse	t 0.	00 Voc	;			Ł		DCoffset
								₂—→ ‡
CHI	FREQ	1.00	0000000	kHz			Λ	ł
AMPL	3.000	Vpp	Phase	0.0	•		'\/	\
DC Offse	t U.	UU VDO	•				v	V
Cycles:	<u>1</u> C	yc				Тур	ne: N Cyr	cle
Delay:	0.00	USEC	;			Sou	rce: Manual	
Period:	-							
					Clear		Cyc	Return

	5.	桁移動と数字キー、ツ ってサイクル数の値を す。	マミを使 設定しま			
	6.	CYC(F5)キーで決定し	ます。	Сус		
設定範囲		サイクル数	1~1,00	0,000		
/ 注意	内部トリガを選択した場合は、バーストは連続し 主意 力されます。全体の周期はバーストの周波数と 間隔で決定されます。				して出 ≤波数、	
	バーストサイクルはバースト波の周波数と周期 り小さい必要があります。					
	バーストサイクル< (バースト周期 x 波形周波数)					
	ゲ クノ	ートバーストモードが選択 ルは無視されますが値に	択された [」] は保持され	場合、バーン れます。	ストサイ	

連続バースト

パネル操作	1. Burst キーを押します。	Burst
	2. N Cycle (F1)キーを押します。	N Cycle
	3. Infinite(F2)キーを押します。	Infinite
	連続バーストは、手動トリガのときのの	み使用できます。

CH2 FR	EQ 1.00	0000000 kł	Iz	A /			
AMPL 3	3.000 Vpp	Phase (.0 °				
DC Offset 0.00 Voc					Ampi		
				¥			
				←		a → ↓	
CHI FR	EQ 1.00	0000000 kł	lz		ΛΛ		
AMPL	3.000 Vpp	Phase (.0 °		-11	\	
DC Offset	0.00 Vpc				V	V	
Cycles: Infin		Туре:	N Сус	le			
Delay:	Source:	Manual					
Period:							
Cycles	Infinite	Phase	Period	TRIG	i setup	Return	

バースト周期

バースト周期は、バーストの開始と次のバーストの開始までの時間を決 定するのに使用します。内部トリガ時のみ設定可能です。

パネル操作	1. Burst キーを押します。.	Burst
	2. N Cycle (F1)キーを押します。.	N Cycle
	3. Period(F4)キーを押します。	Period
	4. 周期の設定値が赤くなります。	

5.	桁移動と数字キー、ツマミを使って周期の値を設定します。	$\bigcirc \bigcirc $	\bigcirc
		$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	

6. uSEC(F1)、mSEC(F2)、 SEC(F3)キーで単位を設定しま usec ~ sec す。

範囲	周期時間	1ms~500s			
	初期値	10ms			
	バースト周期は内部トリガの時のみ適用されます。				
∠・┘注恴	バースト周期の設定	定は、ゲートバーストモードまたはタ			

部と手動トリガ用を使用する場合、無視されます。

バースト周期は、以下の条件を満足するよう十分大き な値でなければいけません:

バースト周期>バーストカウント>波形周波数+200ns

バースト位相

バースト位相は、バースト波形の開始位相を定義します。初期設定値は、 0°です。

	CFI2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.00 Vpc	Ampl DCoffset
	CH1 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.00 Voc Cycles: 1 Cycles: 1 Cyc Delay: 0.00 USEC Period: 10.000 mSEC Constraints Constraints Constraints	Type: N Cycle Source: INT
	Clear	Degree Return
5.	桁移動と数字キー、ツマミを使 って位相の値を設定します。	
6.	Degree(F5)キーで決定します。	Degree
	 位相	-360°~+360°
:	初期値	0°
正引 0V 場4	玄波、方形波または三角波、ラン です(DC オフセットが設定され 全)	ップ波の場合、0°は ていないと仮定した
ッ バ- 両	⊐ / ₀ ースト位相は、N サイクルとゲー 方で使用されます。	トバーストモードの
ゲー	ートバーストモードでは、背面パ	ネルのトリガ入力端

子の信号が TTL ローになると現在の波形が完了した後、出力が停止し電圧出力レベルは、バースト位相の開始電圧と同じになります。

バーストトリガソース

設定範囲

注音

N サイクルモードではトリガを認識するごとにバースト出力を行います。 サイクル数はバーストカウントで設定します。バーストが完了すると次の トリガを待ちます。初期値は内部トリガ、N サイクルモードとなります。

パネル操作 1. Burst キーを押します。.

Burst

Trigger

マニュアルトリガ マニュアルトリガの場合は、 Trigger(F1)キーを押すたびにバー スト出力を行います。

内部トリガソースを選択すると、バーストはバースト周期の設定によって定義されたレートで連続的に出力されます。バースト間の間隔は、バースト期間によって定義されます。外部トリガが選択されている場合は、背面パネルのトリガ入力端子からのトリガ信号(TTL ハイ)で動作します。 トリガが入力されるたびに、バースト信号が出力されます(定義されたサイクル数)。バーストに号が出力されます。 トリガ信号(TTL ハイ)は、無視されます。 手動または外部トリガを使用するときのみバースト位相とバースト/カウントが適用され、バースト周期は使用されません。

時間遅延は、バーストの開始前の各トリガ後に挿入す ることができます。

設定範囲

G^wINSTEK

バーストトリガ出力

背面のトリガ出力端子はスイープおよびバーストで利用します。初期状態ではバースト開始時に立上りエッジが出力されます。

パネル操作	1. Burst キーを押します。. Burst
	2. N Cycle (F1)キーを押します。. N Cycle
	3. TRIG setup(F5)キーを押しま TRIG setup す。
	4. TRIG out(F5)キーを押します。 TRIG out
	5. ON/OFF(F3)キーを押しオン・ ON/OFF オフを切換えます。
	6. Rise(F1)または Fall(F2)を選択 Rise ~ Fall
1 注意	内部トリガまたは外部トリガを選択すると、トリガ出カ 信号は TTL ロー/ハイレベルのいずれかになり、指定 された数の波形サイクルが完了すると反転します。

マニュアルトリガを選択すると、トリガソフトキーが押さ れたときにトリガ出力が出力されます。また、トリガ出 力設定は無効になり、トリガ出力から 1us 以上のパル スを出力します。

セカンダリシステムの設定

セカンダリシステムの設定では、設定の保存・呼出、インタフェース、シス テム情報、ファームウエア更新等ができます。

設定の保存・呼出	158
インタフェースの選択	
LAN インタフェース(MFG-2200)	
LAN ホスト名(MFG-2200)	
USB インタフェース(MFG-2200)	163
USB インタフェース(MFG-2100)	163
システム設定	
バージョンの確認とシステムの更新	165
言語選択(MFG-2200)	
ブザー設定	
表示輝度設定	167
周波数カウンタ	
画面⊐ピー	168

設定の保存・呼出

本器は 10 組の設定および任意波形データを保存する不揮発性メモリを 持ちます。メモリは 0~9 までの番号で管理し、データが保存されている メモリは使用済みとして一覧が赤く表示されます。空いているメモリは青 で表示されます。

保存項目	任意波形	
	• レート	• 垂直表示
	• 周波数	• 出力開始アドレス
	• 長さ	• 出力メモリ長
	• 水平表示	
	設定	
	• 機能	• AM 変調
	• 波形選択	・ソース
	• 周波数	• 波形
	• パルス幅	• 変調度
	• エッジ時間	• AM 周波数
	• 方形波デューティ	• ASK 変調
	• シンメトリ	・ソース
	• 振幅	• レート
	• 振幅単位	• ASK 振幅
	• オフセット	● FM 変調
	• 変調形式	• ソース
	• ブザー設定	• 波形
	• 終端設定	• 偏移
	• 出力状態	• FM 周波数
	• スイープ設定	• FSK 変調
	・ソース	• ソース
	• 種類	• レート
	• マーカー設定	• ホップ周波数
	• スイープ時間	• PM 変調
	• 開始周波数	・ソース
	• 終了周波数	• 波形
	• 中心周波数	• 位相
	 スパン周波数 	• PM 周波数
	 マーカー周波数 	• PSK 変調

ソース

• バースト設定

G≝INSTEK

- レート ソース • トリガ出力 • PSK 位相 • SUM 変調 • 種類 サイクル数 ソース • 位相設定 • 波形 周期 • SUM 振幅 遅延時間 • SUM 周波数 パネル操作 1. UTIL キーを押します。. UTIL
 - 2. Memory(F1)キーを押します。
 - 3. ツマミでメモリ番号を選択しま す。

Memory

Path: Memory:\	Memory0:		
 Memory0: Memory1: Memory2: Memory3: Memory3: Memory5: Memory5: Memory6: Memory7: Memory8: Memory9: 			
Store	Recall	Delete	Delete All

4. 操作を保存(F1)、呼出(F2)、 消去(F3)から選択します。

	5. カーソルが白く表: ツマミで対象を AF etting(設定)、Arb 形+設定)から選択	示されます。 RB(波形)、 +Setting(波 Rします。
	Path: Memory:Memory0	r Or
	Memory0: ARB Memory2: ARB Memory2: ARB Memory3: ARB Memory5: ARB Memory5: ARB Memory6: ARB Memory7: ARB Memory8: ARB Memory9: ARB	Setting ARB+Setting Blue: Empty
	6. Done(F5)キーで メモリ番号	美行します。 Done Done Memory 9
医扒轮团	項日	ARB(波形)
	71	Setting(設定)
		ARB+Setting(波形、設定)
全消去	1. 全ての設定・波形 は UTIL、Memory All (F4)、Done(F ます。	を削除するに /(F1)、Delete 1)を順に押し Memory Delete All Done

インタフェースの選択

MFG-2200 シリーズは LAN/USB のインタフェースを持ち、どちらかを選 択して通信を行います。 MFG-2100 シリーズは USB インタフェースを持 ちます。

LAN インタフェース(MFG-2200)

- 概要 LAN では IP アドレスの設定が必要です。設定は DHCP、AutoIP、固定のいずれかとなります。
- パネル操作 2. UTIL キーを押します。.

hitestern LAN	т			
Interface: LAN	Ira	CKING: UFF		
CH1 Load: 50 OHM	Virt	ual Interface	: Enable	
CH2 Load: High-Z	LAN	Boot Mode:	DHCP	
Pulse Load: High-Z	IP A	ddress: 17	2.22.44.143	
RF Load: High-Z	Net	/lask: 25	5.255.0.0	
Language: English	Gate	eWay: 17	2.22.41.254	
Beep: Off	Mac	Address:		
Sync Output: CH1		00-22-24-69-3	BA-8A	
DisLight: Mid	Hos	tName:		
Power ON: Last		MYHOST001		
Freq Cpl: OFF				
Freq Cpl Offset:	Ο ι	ıHz		
Freq Cpl Ratio: 1.000				
Ampl Cpl: OFF				
Memory Interface	Cal.	System	Dual Ch.	Counter

 Interface(F2)、LAN(F3)、 Config(F2)キーを押します。

 アドレスの設定方法を DHCP(F1)、Auto IP(f2)、
 Manual(F3)キーで選択します。 **G**^WINSTEK

設定内容	DHCP	ネットワーク上の DHCP サーバ ーから設定を受け取ります。		
	Auto IP	AutolP プロトコルに従って IP ア ドレス、サブネットマスクを設定 します。 (169.254.0.0/16)		
	Manual:手動	IP アドレスとサブネットマスクを 手動で設定します。		
	5. 手動を選択した ^は IPAddr(F1)、Net Gateway(F3)キ・ す。	昜合は、 tMask(F2)、 <mark>■P Addron</mark> ~		
	6. 設定する項目は	赤く表示されます。		
	7. 数字キー使って カします。	数値を直接入 ⑦ ⑦ ⑦ ⑦ ① ③ ④ ① ③ ① ① ② ③ ① ② ⑦		
	8. Done(F1)、Done します。	e(F1)キーを押 Done Done		

 Web ブラウザからアクセスする 場合は Virtual Interface を Enable に設定します。Socket 通信はポート 1026 となります。

LAN ホスト名(MFG-2200)

概要	LAN インタフェースを使う場合の す。	ホスト名を設定しま
パネル操作	1. UTIL キーを押します。.	UTIL

 Interface(F2)、LAN(F3)、 Config(F2)、HostName(F4)キ 一を順に押します。

- 3. ホスト名の設定が赤く表示されます。
- ツマミで文字を選択し Enter Char(F1)キーで入力します。

5. Done(F5)キーで完了します。

USB インタフェース(MFG-2200)

- 概要 USB はインタフェースを選択のみで設定はありません。
- パネル操作 1. UTIL キーを押します。.
 - 2. Interface(F2)、USB(F2)キーを 押します。

USB インタフェース(MFG-2100)

概要 USB はインタフェースを選択し、ボーレートを設定します。このボーレートは PC 側の RS-232C の通信速度 となります。 パネル操作 1. UTIL キーを押します。.

3.

2. Interface(F2)キーを押します。 Interface

Interface: USB USB Baud Rate: 115200 CH1 Load: 50 OHM Pulse Load: 50 OHM RF Load: 50 OHM Language: English Beep: Off DisLight: High	Counter State: OFF	
USB BaudRate		Return
BaudRate(F2)キー す。	を押しま	BaudRate

4. 9600(F1)~115k(F5)キーを押 9600 115k します。

システム設定

システム設定は言語・表示、バージョン確認などを行います。

- バージョンの確認とシステムの更新
- パネル操作 1. UTIL キーを押します。.
 - 2. Cal.(F3)、Software(F2)、 Version(F1)キーを押します。

ファームウエアなどのバージョンとシリアルナンバーが 表示されます。

システムの更新 1. USB メモリのルートフォルダに アップデートファイルのみを入 れ、本器前面の USB-A コネク タに接続します。

2. Cal.(F3)、Software(F2)、 Upgrade(F2)キーを押します。

アップデートファイルは拡張子が bin となります。

言語選択(MFG-2200)				
概要	MFG-2200 では英語表示の他に中国語表示が可能 です。			
パネル操作	1. UTIL キーを押します。.			

 System(F4)、Language(F2)キ ーを押します。

3. 言語選択が赤く表示されます。

Interface: LAN	Tracking: OFF
CH1 Load: 50 OHM	Virtual Interface: Enable
CH2 Load: High-Z	LAN Boot Mode: DHCP
Pulse Load: High-Z	IP Address: 172.22.44.143
RF Load: High-Z	NetMask: 255.255.0.0
Language: English	GateWay: 172.22.41.254
Beep: Off	MacAddress:
Sync Output: CH1	00-22-24-69-3A-8A
DisLight: Mid	HostName:
Power ON: Last	MYHOST001
Freq Cpl: OFF	
Freq Cpl Offset:	0 uHz
Freq Cpl Ratio: 1.000	
Ampl Cpl: OFF	
中文 English	Return

4. 中文(F1)、English(F2)で選択 します。

ブザー設定

概要	キー操作およびツマミ操作でブザーカ ます。	が鳴るかを設定し
パネル操作	1. UTIL キーを押します。.	UTIL
	2. System(F4)を押します。	System
	3. Beep(F4)を押すたびに ON/ OFF が切換ります。	Веер

表示輝度設定

概要 輝度調整は LCD 表示の明るさを設定します。

- パネル操作
- 1. UTIL キーを押します。.
- 2. System(F4)、More(F5)、 DisLight(F2)を押します。
- System More DisLight

High

3. Low(F1)、Mid(F2)、High(F3)で Low 選択します。

Interface:	LAN	Тга	cking: OFF	
CH1 Load:	50 OHM	Vin	tual Interface: Er	able
CH2 Load:	High-Z	LA	Boot Mode: DH	СР
Pulse Load:	High-Z	IP /	Address: 172.22	.44.143
RF Load:	High-Z	Net	Mask: 255.25	5.0.0
Language:	English	Gat	eWay: 172.22	.41.254
Beep: Off		Ma	Address:	
Sync Outpu	it: CH1		00-22-24-69-3A-8	A
DisLight:	Mid	Hos	:tName:	
Power ON:	Last		MYHOST001	
Freq Cpl:	OFF			
Freq Cpl Of	fset:	0	uHz	
Freq Cpl Ra	ntio: 1.000			
Ampl Cpl:	OFF			
Low	Middle	High		Return

UTIL

Gate Time

Counter

1 Sec

周波数カウンタ

ゲート時間を設定して周波数測定を行います。

- Output: N/A
- 1. UTIL キー、Counter(F6)キー を押します。

Input:

- Gate Time(F2)、1 Sec(F3)キ ーを押して1秒のゲートを設定 します。
- 3. 背面の入力に信号を入力します。

画面コピー

概要	表示画面を USB メモリに画像としてコピーします。
170	

接続	1.	背面の USB-A ポートに FAT32	
		フォーマットの USB メモリを装	
		着します。	

パネル操作 2. UTIL キーを押します。

- 3. System(F4)、Hardcopy(F1). キーを押します。
- 4. ツマミを回して保存したい画面 を表示させ F1 キーを押しま す。

F 1

チャンネル設定

本章では終端インピーダンス設定、位相設定、位相 同期、DSO リンク設定を説明します。

終端インピーダンス	170
位相設定	171
位相同期化	172
DSO Link	172

Load

50 OHM

High Z

終端インピーダンス

概要	本器は終端インピーダンスの切換えができます。初期 値は 50Ω です。終端インピーダンスは、リファレンスと してのみ使用されます。実際の負荷インピーダンスが 指定されているものと異なる場合は、実際の振幅とオ
	指定されているものと異なる場合は、実際の振幅とオ
	フセットに応じて異なります。

- 2. Load(F1)を押します。
- 50 OHM(F1)、High Z(F2)でイ ンピーダンスを選択します。

位相設定

パネル操作 1. CH1/CH2 キーを押して設定す るチャンネルを明るくします。

Phase

Phase(F5)キーを押すと
 Phase が赤く表示されます。

CU2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.000 Vo₀	Ampi DCoffset
CH1 FREQ 1.0000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.000 Vpc	Ampl DCoffset 4-1/FREQ-> \$
0 Phase Sync Int	Degree Return

3. ツマミと数字キーで値を設定し ○ ○ ○
 ます。
 ○ ○ ○

4. Degree(F5)キーで決定します。

GI/2 FREQ 1.000000000 kHz AMPL 3.000 Vpp Phase 0.0 ° DC Offset 0.000 Vpc	Ampl
CH1 FREQ 1.0000000000 kHz AMPL 3.000 Vpp Phase 10.0 ° DC Offset 0.000 Vpc	
0 Phase Sync Int	DCoffset

G^w**INSTEK**

位相同期化

概要	ch1とch2の出力の位相を同期させ	ます。
パネル操作	1. CH1/CH2 キーを押します。	CH1/CH2
	2. Phase(F5)キーを押します。	Phase
	3. Sync Int(F2)キーを押して同期 させます。	Sync Int

DSO Link

概要	MFG-22xx は、DCS シリーズの DSO の USB ポート
	と直結して波形データの転送をすることができます。
	対象機種は DCS-2000E/1000B シリーズ、MDO-
	2000E シリーズです。

パネル操作	1.MFG-2200 の USB-A ポートと	
	DSO の USB B ポートをつなぎ	
	ます。	

2. CH1/CH2 キーを押します。 (CH1/CH2)

Search

- 3. DSO Link(F6)キーを押します。 DSO Link
- 4. Search(F1)キーを押します。
- 5. DSO の波形チャンネルを選択 **CHI ~ CHI ~ CHI**

デュアルチャンネル動作

本章ではデュアルチャンネル設定について説明しま す。

周波数カップリング	174
振幅カップリング	175
チャンネルトラッキング	176
出力同期	177

周波数カップリング

概要	周波数カップリングは選択したチャンネルを基本として もう一方のチャンネルの周波数を同期変更するもので す。同期(カップリング)はオフセットおよびレシオの 2 種類があります。
パネル操作	1. UTIL キーを押します。.
	2. Dual Ch(F5)、Freq Cpl(F1)キ Dual Ch 一を押します。 Freq Cpl
	3. カップリングにオフセットを選択 する場合は、Offset(F2)キーを 押します。
	桁移動と数字キー、ツマミを ⑦ ④ ④ 使ってオフセットの値を設定し ④ ⑤ ④ ます。 ① ② ④ ④ ⊙ ⑦
	単位を uHz(F2)、mHz(F3)、 Hz(F4)、kHz(F5)、MHz(F6) uHz ~ MHz で設定します。
	4. カップリングにレシオを選択す Ratio Gばあいは、Ratio(F3)キーを 押します。
	桁移動と数字キー、ツマミを ⑦ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Enter(F5)キーで	ご決定します。 Enter
5.	周波数カップリンク には、OFF(F1)キ す。	グをオフする OFF ーを押しま
	Interface: USB CH1 Load: 50 OHM CH2 Load: 50 OHM Pulse Load: 50 OHM RF Load: 50 OHM Language: English Beep: On Sync Output: CH1 DisLight: Mid Power ON: Last Freq Cpl OFF Freq Cpl Offset: Freq Cpl Ratio: 1.000 Ampl Cpl: OFF	Tracking: OFF Virtual Interface: Disable LAN Boot Mode: AutoIP IP Address: 169.254.206.154 NetMask: 255.255.0.0 GateWay: 0.0.0.0 MacAddress: 00.45.56.78-9A-CD HostName: MYHOST001 0 uHz
	OFF Offset	Ratio
範囲	オフセット範囲	-60MHz ~ 60MHz (max)
	オフセット分解能	最小分解能:1uHz
		CH2 の周波数= CH1 の周波数+オフセット値
	レシオ範囲	1000.000 ~ 0.001
	レシオ分解能	最小分解能:0.001
		CH2 の周波数 = CH1 の周波数 x レシオ値

振幅カップリング

概要	振幅カップリングは選択したチャンネルを基本としても う一方のチャンネルの振幅をおなじ値にするもので す。
パネル操作	1. UTIL キーを押します。.

Inverted

2. Dual Ch(F5)、Ampl 一を押します。	Cpl(F2)+ Dual Ch Ampl Cpl
3. ON(F1)、OFF(F2) を選択します。	F一で動作 ON OFF
Interface: USB CH1 Load: 50 OHM CH2 Load: 50 OHM Pulse Load: 50 OHM RF Load: 50 OHM Language: English Beep: On Sync Output: CH1 DisLight: Mid Power ON: Last Freq Cpl: OFF Freq Cpl Ratio: 1.000 Ampl Cpl: OFF	Tracking: OFF Virtual Interface: Disable LAN Boot Mode: AutoIP IP Address: 169.254.206.154 NetMask: 255.255.0.0 GateWay: 0.0.0.0 MacAddress: 00-45.56-78-9A-CD HostName: MYHOST001 0 uHz

チャンネルトラッキング

概要	チャンネルトラッキングは2つのチャン 同じ信号(ON)または振幅の反転信号 カします。	vネルの出力に (Inverted)を出
パネル操作	1. UTIL キーを押します。	UTIL
	2. Dual Ch(F5). Tracking(F3)キ ーを押します。	Dual Ch Tracking
	3. OFF(F1)、ON(F2)、 Inverted(F3)、を選択します。.	ON OFF
Interface: USB	Tracking: OFF	
-----------------------	-----------------------------	
CH1 Load: 50 OHM	Virtual Interface: Disable	
CH2 Load: 50 OHM	LAN Boot Mode: AutolP	
Pulse Load: 50 OHM	IP Address: 169.254.206.154	
RF Load: 50 OHM	NetMask: 255.255.0.0	
Language: English	GateWay: 0.0.0.0	
Beep: On	MacAddress:	
Sync Output: CH1	00-45-56-78-9A-CD	
DisLight: Mid	HostName:	
Power ON: Last	MYHOST001	
Freq Cpl: OFF		
Freq Cpl Offset:	0 uHz	
Freq Cpl Ratio: 1.000		
Ampl Cpl: OFF		
OFF ON	Inverted Return	

出力同期

概要	出力同期は ch1 と ch2 の出力の位相差を 0°にしま す。	
パネル操作	1. UTIL キーを押します。	
	2. Dual Ch(F5)を押します。 Dual Ch	
	3. Sync Int (F4) を押します。 <mark>Sync Int</mark>	
Interfac CH1 Loc CH2 Loc Pulse L RF Loa Languag Beep: 0 Sync O DisLight Power 1 Freq Cp Freq Cp Freq Cp Ampl C	: USB Tracking: OFF : 50 OHM Virtual Interface: Disable : 50 OHM LAN Boot Mode: AutoIP at: 50 OHM IP Address: 169.254.206.154 : 50 OHM IP Address: 169.254.206.154 : 50 OHM NetMask: 255.255.0.0 : English GateWay: 0.0.0.0 MacAddress: tput: CH1 00.45.56-78.9A-CD Mid HostName: N: Last MYHOST001 OFF OFF Offset: 0 uHz Ratio: 1.000 : OFF pl Ampl Cpl Tracking Sync Int Return	

任意波形

本器の任意波形機能は、最高 200MHz のサンプリン グレート、16k ポイント、16ビット垂直分解能(±8192) の波形を発生させます。

内蔵波形の利用	179
波形に AbsAtan を選択する場合	179
任意波形表示	180
時間軸設定	
垂直軸設定	
左ページ移動(Back Page)	
右ページ移動(Next Page)	185
概要表示	186
任意波形の編集	187
波形をポイントで指定してデータを変更する	187
波形を直線で編集する	188
波形のコピー	190
波形の消去	
波形データの保護	193
任意波形の出力	195
データ長を指定した出力	195
任意波形の保存・呼出し	196
内部メモリへの保存	
USB メモリへの保存	
内部メモリからの波形データのロード	200
USB メモリから波形データをロード	

内蔵波形の利用

本器は、正弦波、方形波、ランプ波、sin(x)/x 波、指数波形、パルスなど 66 種類の内蔵波形から自由に選択し、波形を出力することができます。

179

Absatan 波形の設定例、開始:0、データ長: 1000、

スケール:1198

任意波形表示

時間軸設定

時間軸の設定はスタートポイントまたはセンターポイントとポイント数で設定します。

		ARB
	2. Display(F1)、Horizon(F1) キ ーを押します。	Display Horizon
開始点の設定	3. Start(F1)キーを押すと開始アド レスが赤くなります。	Start
	Horizon From: 0 Length: 200 Vertical low: -8191 high: 8191 Clear	Center: 100 Center: 0 Enter Return

	4. 桁移動と数字キー、ツマミを使 って開始点(Horizon from)を指 定します。		
	5. Clear(F4)キーで中止します。	Clear	
	6. Enter(F5)キーで終了します。	Enter	
	7. Return キーで戻ります。	Return	
データ長	8. 同様にデータ長(Length:F2)を 設定します。	Length	
中心点	9. 同様に中心点((Center:F3)を 設定します。	Center	
表示拡大	10.表示されている任意波形を拡 大するには Zoom In(F4)キーを 押します。ズームイン機能は、 キーが押されるたびに表示され ている長さが半分になります。 設定可能な最小の長さは、3 で す。	Zoom in	
表示縮小	11.波形のセンターポイントからズ ームアウトするにはは、Zoom out(F5)キーを押します。ズーム アウト機能は、表示ポイント数 の長さを2倍にします。最大長 は 16384.です。	Zoom out	

例では、スタート:0、長さ:500、センター:250 となっています。

CH2	FREQ 195.3125	00000000 kl	lz		
CH1	AMPL 3.00	O VPP			
DC Offse	t 0.00 Voc				
RATE	200.000000	MHz			
8191 -8191					
Hoi Ve) izon From: rtical low:	0 Leng -8191 high:	th: 500 8191) Center: Center:	499 250 0
Start	Length	Center	Zoom in	Zoom out	Return

垂直軸設定

垂直軸も時間軸と同様に上限・下限を設定するか、センターと幅を指定します。

パネル操作	1. ARB キーを押します。.	ARB
	2. Display(F1)、Vertical(F2)キー を押します。	Display Vertical
下限を設定	3. Low(F1)キーを押すと下限 (Vertical Low)が赤くなります。.	Low
	Horizon From: 0 Length: 200 C Vertical low: -8191 high: 8191 C Clear	enter: 100 enter: 0 Enter Return
	 4. 桁移動と数字キー、ツマミを使 って下限点(Vertial Low)を指定 します。 ③ 	

G≝INSTEK

	5. Clear(F4)キーで中止します。 Clear
	6. Enter(F5)キーで終了します。 Enter
	7. Return キーで戻ります。 Return
上限を設定	8. High (F2)キーを押して同様に High L限を設定します。.
センターを設定	9. Center (F3)キーを押して同様 Center に値を設定します。
Zoom	10.Zoom in(F4)キーを押すと、任 意波形のセンターから垂直スケ ールを拡大します。ズームイン 機能は、キーを押すたびに垂直 スケールを半分にします。設定 可能な最小垂直スケールは、ロ ーが-2 で、ハイが 2 です。
	11.Zoom out(F5)キーを押すと、垂 直スケールをズームアウトしま す。ズームアウト機能は垂直ス ケールの高さを2倍にします。 設定できる垂直スケールの最 小は-8191、最大は8191で す。

例では、下限:-8191、上限:8191、センター:0となっています。

左ページ移動(Back Page)

概要	波形表示の左側のページへの移動は E 使います。	Back Page を
パネル操作	1. ARB キーを押します。.	ARB
	2. Display(F1)、BackPage(F4)キ ーを押します。	Display Back Page
	メモリの最初まではページごとに移	、動しますの長

メモリの最初まではページごとに移動します。、最 初のページでは左側が最初のポイントになりま す。 移動前が、開始点:50、長さ:45、中心点:75の場合、 右移動後は開始点:5、長さ:45、中心点:27となり、再 度移動すると、開始点:0、長さ:45、中心点:22となり ます。

CH2	FREQ 195.3125	00000000 kH	lz		
CH1	AMPL 3.00	O VPP			
DC Offse	et 0.00 Voc				
BATE	200.000000	MHz			
8191 -8191					
Ho Ve	0 rizon From: rtical low:	0 Leng -8191 high:	th: 50 819) Center: 1 Center:	499 250 0
Horizon	Vertical	Next Page	Back Page	Overview	Return

右ページ移動(Next Page)

概要 波形表示の右側のページへの移動は NEXT Page を 使います。 パネル操作 1. ARB キーを押します。. 2. Display(F1)、NextPage(F3)キ Display ーを押します。 Next Page

メモリの最後まではページごとに移動します。最後のページは右側が最後のポイントになります

移動前が、開始点:0、長さ:45、中心点:22の場合、 右移動後は、開始点:45、長さ:45、中心点:67となり ます。

CH2 F	REQ 195.31250	00000000 kł	łz		
CH1 /	AMPL 3.000) Vpp			
DC Offset	0.00 Voc				
RATE	200.000000	MHz			
8191 					
51 Horiz Vert	10 zon From: ical low:	500 Leng -8191 high:	th: 50(8191) Center: Center:	999 750 0
Horizon	Vertical	Next Page	Back Page	Overview	Return

概要表示

パネル操作 1. ARB キーを押します。. Display(F1)、Overview(F5)キ Display ーを押します。 時間軸: 0~1000 垂直軸: -8191~8191 で表示されます。

任意波形の編集

波形をポイントで指定してデータを変更する

- 概要 本器は、波形上のどこででも、ポイントのデータを変更 する編集機能を持っています。
- パネル操作 2. ARB キーを押します。.
 - 3. Edit(F2)、Point(F1)、 Address(F1)キーを押します。

ARB

4. アドレスの設定が赤くなります。

	Address: 0 Data: 31878			
		Clear	Enter	Return
5.	桁移動と数字キー、ツ ってアドレスの値を設定	マミを使 します。		
6.	Enter(F5)キーでアドレン します。	スを確定	En	ter
7.	Data(F2)キーでデータる ます。	を選択し	Da	ta
8.	データ設定が赤くなりま	す。青?		

アドレス 100 のデータを 1000 に変更した場合の 例は以下の通りです。

CH2	FREQ 195.312500000000 kHz
CH1	AMPL 3.000 Vpp
DC Offse	et 0.00 Yes
BATE	200.000000 MHz
8191	
-8191 Ad	0 199 Idress: 100
Da	ta: 1000
Addres	s Data Return

波形を直線で編集する

概要 本器は、波形上のどこででも、2点を指定して直線デ ータを作成する編集機能を持っています。

パネル操作 1. ARB キーを押します。

 Edit(F2)、Line(F2)、Start ADD(F1)キーを押します。

3. 開始点のアドレスが赤くなります。

	Start Address: 0 Sta Stop Address: 39 Sto	art Data: op Data:	0	
		Clear	Enter	Return
4.	桁移動と数字キー、ツ ってアドレスの値を設す	マミを使 定します。		
5.	Enter(F5)キーでアドレ します。	々なを確定	En	ter
6.	同様に Start Data (F2 Stop Data (F4)で開始 終了点データを設定し	2), Stop A ☆点データ、 ます。	ddress (F 、終了点フ	3) and パレス、
7.	Done(F5)キーで編集 ます。	を確定し	Do	one
8.	Return(F6)キーで設定 ます。	≧を終了し	Ret	turn

波形のコピー

G^w**INSTEK**

- パネル操作 1. ARB キーを押します。. ((
 - 2. Edit(F2), Copy(F3), Start(F1) キーを押します。

ARB	\bigcirc

3. コピー元のアドレス設定が赤くなります。

Enter

Done

Return

- 5. Enter(F5)キーでアドレスを確定 します。
- 6. 同様に、Length (F2)、Paste to (F3)で長さ、コピー 先アドレスを指定します。
- 7. Done(F5)キーで編集を確定し ます。
- 8. Return(F6)キーで設定を終了し ます。

コピー元アドレス 0、コピー先アドレス 100、長さ 500 で実行すると以下のようになります。

波形の消去

- パネル操作 1. ARB キーを押します。. 2. Edit(F2)、Clear(F4)、Start (F1)キーを押します。 Clear Start
 - 3. クリアするデータの開始アドレスが赤くなります。

		Clear From: 0 Length: 40			
		Clear		Enter	Return
	4.	桁移動と数字キー、ツマミを使 ってアドレスの値を設定します			
:	5.	Enter(F5)キーで確定します。		Ente	ər
(6.	同様に Length(F2)キーで長さ を指定します。		Leng	th
	7.	Done(F3)キーで編集を確定し ます。		Don	e
	8.	Return(F6)キーで設定を終了 ます。	L	Retu	rn
全削除	9.	ALL(F5)、Done(F5)、 Return(F6)キーで波形データ		ALI	-

消去するエリアを100~500に指定します。

が全て削除され、0になります。

Return

CH2	FREQ 195.	312500000000	kHz		
CH1	AMPL	3.000 Vpp			
DC Offse	et 0.00 \	/bc			
RATE	200.00000)0 MHz			
8191					
_8191					
Cle Lei	0 ear From: ngth:	100 500			999
Start	Leng	th Done		ALL	Return

クリア後は以下の状態になります。

全消去後は以下のようになります。

CH2	FREQ 195.312	500000000	kHz		
DC Offs	AMPL 3.00 et 0.00 Voc	JU YPP			
RATE 8191	200.000000	MHz			
-8191					
CI	0 ear From: nath:	0			999
	ngun	200		Done	Return

波形データの保護

保護機能を設定すると、任意波形の指定領域を変更できないようにできます。

	Protect Start: 0 Protect Off Length: 10
	Clear Enter Return
	4. 桁移動と数字キー、ツマミを使 ⑦ ① ① ① ってアドレスの値を設定します。 ① ① ① ① ① ② ① ① ① ② ④ ① ① ② ④
	5. Enter(F5)キーで確定します。 Enter
	6. 同様に Length (F3)を設定しま Length す。
	7. Done(F5)キーで編集を確定し Done ます。保護された部分がオレン ジの帯で表示されます。
全域保護	8. ALL(F1)キーを押すと全域が保 ALL 護されます。
	9. Done(F6)キーで編集を確定し Done ます。
全域保護解放	10.Unprotect(F5)キーで保護を解 Unprotect 放します。
	11.Done(F6)キーで編集を確定し Done ます。
	12.オレンジのエリアが消えて保護か解除されます。また"Protect off"がグレーとなります。
	アドレス 100~500 を保護した場合は以下のように なります。

3. 保護するアドレス開始点が赤くなります。

任意波形の出力

任意波形は最大 16k ポイントまでの信号を出力します。

データ長を指定	とした出力
パネル操作	1. ARB キーを押します。.
	2. Output(F6)、Start(F1)キーを押 します。
	3. 開始点の設定が赤くなります。
	Start: 0 Cycles: Infinite Length: 1024
	Clear Enter Return
	 4. 桁移動と数字キー、ツマミを使 ○ ○ ○ ってアドレスの値を設定します。 ○ ○ ○ ○ ○ ○ ○ ○ ○
	5. Enter(F5)キーで確定します。 Enter

 6. 同様に Length(F2)キーで長さ を指定します。

開始点 100、長さ 500 を指定した場合の出力例

任意波形の保存・呼出し

本器は内部メモリに任意波形を 10 個まで保存し、呼出すことができます。 また、USB フラッシュメモリに保存および呼出しができます。.

内部メモリへの保存

G≝INSTEK

Path: Memory:\M	lemory0:			
Memory0: Memory1: Memory3: Memory3: Memory5: Memory6: Memory6: Memory8: Memory9:	ARB ARB ARB ARB ARB ARB ARB ARB ARB	Setting Setting Setting Setting Setting Setting Setting Setting Setting	ARB+Setting ARB+Setting ARB+Setting ARB+Setting ARB+Setting ARB+Setting ARB+Setting ARB+Setting ARB+Setting ARB+Setting	<mark>Red: Uesd</mark> Blue: Empty
Select				Return

USB メモリへの保存

パネル操作 1. ARB キーを押します。.

ARB

Save

Start

- 2. Save(F4)、Start(F1)キーを押し ます。
- 3. 開始点が赤に表示されます。

- フォルダの作成 New Folder す。
 - されます。

16.テキストエディタが初期設定名"NEW_FIL"で表示 されます。

New File(CSV): NEW_FIL												
А	в	С	D	Е	F	G	н	T	J	К	L	М
Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Z
1	2	3	4	5	6	7	8	9	0		-	-

Path: USB:\	
JS57 \ D NEW_FOL D ABC	
₽ AF6.CSV	
Select New Folder New File	Return

内部メモリからの波形データのロード

Select

То

- Select(F1)キーを押し、メモリ ーを選択します。
- To(F3)キーでロードアドレスを 設定します。初期値は0になっ ています。
- 7. "Load to"が赤く表示されます。

0 Load To: 0			199
	Clear	Enter	Return
8. 桁移動と数字キー、ツマ って開始点の値を設定し	とを使 します。		
9. Enter(F5)キーで決定し	ます。	En	ter
10.Return(F6)キーで元の に戻ります。	⊻=ュ—	Ret	urn
11.Done (F5)キーで確定し	ます。	Do	ne

メモリー0の波形を選び、アドレス0から波形をロード 下場合は以下のようになります。

Path: Memory:\M	emory0:			
Memory0: Memory1:	ARB ARB	Setting Setting	ARB+Setting ARB+Setting	
Memory2: Memory3: Memory4:		Setting Setting Setting	ARB+Setting ARB+Setting ARB+Setting	
Memory5: Memory6: Memory7:		Setting Setting Setting	ARB+Setting ARB+Setting ARB+Setting	
Memory8: Memory9:		Setting Setting	ARB+Setting ARB+Setting	
Select				Return

USB メモリから波形データをロード

AFG.CSVを選択しでアドレス0からロードした場合は 以下の表示となります。

Path: USB:\ \ABC	
USB:\ _\ ⊡ AFG.CSV	
Select	Return
CH2 FREQ 400.0000000000 kHz	
CHI AMPL 3.000 Vpp	
DC Offset 0.00 Yes	
RATE 200.000000 MHz	
8191	
-8191	
U Load To: 0	999
Select	Return

リモートインタフェース

リモートインタフェースのテスト	
コマンド構文	
コマンドリスト	
488.2 共通コマンド	
ステータスレジスタコマンド	
システムコマンド	
APPLy コマンド	
Output コマンド	
パルス設定コマンド	
振幅変調(AM) コマンド	239
ASK 変調コマンド	243
FM 変調コマンド	246
FSK 変調コマンド	251
位相変調(PM)コマンド	254
PSK 変調コマンド	
SUM 変調コマンド	
パルス幅変調(PWM)コマンド	
スイープコマンド	
バーストモードコマンド	
任意波形(ARB)コマンド	
COUNTER コマンド	
PHASE コマンド	
COUPLE コマンド	
セーブ・リコールコマンド	
エラーメッセージ	
SCPI ステータスレジスタ	

リモートインタフェースのテスト

本器は USB および LAN をサポートしています。本体側の USB 設定 及び LAN 設定は 161 ページのインタフェースの選択を参照してください。

USB のデバイスドライバのインストール

パネル操作

- 1. USB ケーブルを背面パネルの USB B ポートへ接続し、反対側 を PC に接続します。
- PCがUSBドライバを要求してきたら付属のCD または弊社ホームページからダウンロードした XXXXXXX.infのあるフォルダを選択してください。
- 3. PC のデバイスマネージャを開いて COM ポートが

増えていることを確認します。他のデバイスに/! マークで表示されている場合は、右クリックで表示 されるデバイスドライバの更新で inf ファイルのあ るフォルダを指定してください。ドライバの指定では PC の管理者権限が必要です。 MFG-2200 は USB-CDC デバイス、MFG-2100 は USB-Serial 変換器として認識されます。

USB の接続確認

概要	USB の設定を参考に COM ポートで接続します。
通信ソフト	PC のデバイスマネージャで仮想 COM ポートのポート 番号を確認し、RS-232C が利用できる通信ソフト (Putty など)を起動してください。

動作確認 通信ソフトから以下のようにクエリコマンドと LF コード を送信してください。

*idn?

本器より下記の応答があります。

製造者、モデル番号、シリアル番号、ファームウェアバ ージョン。

GW INSTEK, MFG-xxxx, SN:XXXXXXX, Vm.mm

パネル表示 リモートコントロール中はキーがロックされ REM/ LOCK が表示されます。

> REM/LOCK (F6)キーを押すと ロックが解除されます。

CFI2 FREQ 1.000000000 AMPL 3.000 Vpp Phase DC Offset 0.00 Vpc	kHz 0.0 °	Ampl Ampl
CH1 FREQ 1.00000000 AMPL 3.000 Vpp Phase DC Offset 0.00 Vpc AM Depth: 100.00 % AM Freq: 100.000	kHz	Type: AM Source: INT Shape: Sine
		REM/LOC

LAN の接続テスト(MFG-2200 のみ)

本器を LAN で接続した場合は Web ブラウザでアクセスできます。また、 コマンド通信は Socket による通信を行うことができます。

概要 LAN 設定の IP を指定してブラウザで機器情報の閲覧 と操作ができます。また TCP/IP の通信ソフトがあれ ば直接通信ができます。

Web ブラウザ 1. IP を指定してページに入ると Welcome ページが 表示され、コントロールページ、設定ページに切換 ができます。

	Minde to Measurer MFG-2000 Multi C	hannel Function Generator	
	Welcome to your		
	Web-Enabled MFG Channel Function	-2532 Multi Generator	
	Information about this Web-Ena	bled instrument	
	bolivered;	MPG-3532	
	Secol Monteet	1101100	
	Description	OW INSTEKNIPO-3032,5N 11111111130.32	
	Picola et al:	atri-costopi	
	Condig Type:	Manual	
	IP Addsona:	672 86 531 555	
	MMA TOPP Connect Mining:	TOPHP: 112.16.131.153.1528.800x87	
	MAC ADDress	(6-45-56-76-3A-CD	
	Software Version	MPG-3032 V0 320, 0504 FPGA: 0021 BootLoad: V1.00 5N: 11111111	
	and a second		

各ボタンの操作・コマンドの送信ができます。 SWINSTEK WTG-2020 Mult Churrel Function Generator

ネットワーク設定を変更できます。

Contraction of the second					10110
(=) (=) http://172.16.13	11.153/Leglos.html	.D = C @ MFG-2000			
文州の 網羅の 変更い 8	28年(A) 工具(7) #2590				
	1				Second Houses I own
GUINSTEK	MFG-2000 Multi Chan	nel Function Generator			
Made to Measure					
California Pape			3 13	2	
			Current	Configuration of	
AND Carried		MFG-	2532 Multi C	hannel Function Generator	
Daw & Married			TR.	holds Configuration	
Congenition			1.74		
	Parameter			Currently in ane	
	Cosfig Type:			Manual	
	P Address:			1/2/6/191/153	
	Subret Matk:			255 255 216 0	
	Default Gateway:			172.16.131.1	
	Restrate:			MYHOSTOD.	
	Ethernet Connection Monitor			ON	
	Description:			GW INSTEK MFG-3032 SN 111111111.00.32	

- Socket 通信
- Socket 通信を行う場合はポート 1026 を使用します。通信テストは TCP/IP が利用できる通信ソフト (Putty など)を起動してください。通信プログラムを 起動し、IP、Socket ポートを設定します。通信プロ トコルは Raw または"なし"を選択します。

動作確認 通信ソフトから以下のようにクエリコマンドとLF コード を送信してください。

*idn?

本器より下記の応答があります。

製造者、モデル番号、シリアル番号、ファームウェアバ ージョン。

GW INSTEK, MFG-xxxx, SN:XXXXXXX, Vm.mm

パネル表示 リモートコントロール中はキーがロックされ REM/ LOCK が表示されます。

REM/LOCK (F6)キーを押すとロックが解 REM/LOCK (F6)キーを押すとロックが解 REM/LOCK

コマンド構文

進柳規格	• IEEI	E488.2. 19	92 (全て進捗	饥)	
	 SCF 	- 1994 (− 1, 1994 (−		~)	
コマンドツリー	SCPI マンド コマント ンドの ードを は、コロ 以下に と:PUL	規格は、リー 構文と構造 には、階層ッ キーワードに うつコマンド コン(:)で区 示すように Seのサブ	Eートコントロ を定義する規 リー構造に さ、ルートノー ツリー上のノ 切られてい SOURce[1] ノードがあり	コール可能な言 格です。 基づいていま -ドとして最初 'ードです。各・ ます。 2] のセクショご ます。	計測器のコ す。各コマ のキーワ サブノード ンと:PM
	Root node		:SOUF	Rce[1 2]	
	2 nd node	;P	м́	l :PUI	, _Se
	3 rd node	SOURCE	↓ Shape	:PERiod	:WIDTh

G^wINSTEK

コマンドタイプ	コマンドは、シンフ	『ルコマンド、複合コマンドおよびクエ
	リの3つの型に図	【分することができます。
	シンプル	単一コマンド(パラメータ付き/なし)
	例	*OPC
	複合	コロン(:)で区切られた2つ以上のコ
		マンド(パラメータ付き/なし)
	例	SOURce1:PULSe:WIDTh
	クエリ	クエリは、シンプルまたは複合コマ
		ンドに続けて疑問符(?)を付けま
		す。パラメータ(データ)が返されま
		す。該当するパラメータの最大値ま
		たは最小値も照会することができま
		す。
	例	SOURce1:FREQuency?
		SOURce1:FREQuency? MIN
コマンド形式	コマンドとクエリは	、長文と短文の2つの形式がありま
	す。本書のコマン	ド構文は、大文字で短文部分を小文
	字で残り(長文形)	式)のコマンドが書いてあります。
	long lo	ng
	SOURce1:DCC	Offset
	short shor	t
	コマンドはちょうど	ので、短文、または長文形式が正し
	ければ、大文字ま	たは小文字どちらでも記述すること
	ができます。不完	全なコマンドが認識されません。
	以下に、正しく書た	かれたコマンドの例を示します。
	長文 SOURce	1:DCOffset
	SOURCI	E1:DCOFFSET
	SOUICE1:	
	应义 SOURT.	
コマンド形式	SOURce1:DCOffset	
	1 2	
		3: パラメータ
		4: メッセージターミネータ

G≝INSTEK

角括弧[]	角括弧[]を含んでいるコマンドは、内容がオプション であることを示します。コマンドの機能は、角括弧[]内 の項目があってもなくても機能は同じです。括弧は、実 際のコマンドには使用しません。 以下の周波数クエリコマンドは次の3つの形式が使 用できます。 SOURce1:FREQuency? [MINimum] SOURce1:FREQuency? MAXimum SOURce1:FREQuency? MINimum SOURce1:FREQuency?			
中括弧{ }	中括弧[]を含んでいるコマンドは、中括弧内の項目を 選択しなければならないことを示しています。実際のコ マンドには使用しません。			
山括弧 <>	山括弧は、パラス いことを示してい ータの説明を参照 は使用しません。	くータの値が指定され ます。詳細について 照してください。山括 9	はければならな は、以下のパラメ 狐は、コマンドに	
バー	バーは、コマンド切るために使用し	形式で複数のパラメ っています。	ータ選択肢を区	
パラメータ	タイプ	説明	例	
	<boolean></boolean>	ブール論理	0、1/ON,OFF	
	<nr1></nr1>	整数	0,1,2,3	
	<nr2></nr2>	小数	0.1、3.14、8.5	
	<nr3></nr3>	浮動小数点	4.5e-1、 8.25e+1	
	<nrf></nrf>	NR1、2、3の何れ か	1、1.5、4.5e-1	
	<string></string>	任意の文字列		
	<nrf+> <numeric></numeric></nrf+>	NRf 形式または MAX,,MIN,DEF の 文字列	1, 1.5, 4.5e-1 MAX, MIN,	
	<aard></aard>	任意の文字列		
	<discrete></discrete>	定義された文字列	IMM, EXT, MAN	

	<frequency> 周波数単位時の数</frequency>		1 KHZ, 1.0 HZ,
	<peak deviation in Hz></peak 	値	MHZ
	<rate hz="" in=""></rate>		
	<amplitude></amplitude>	単位付きのピーク 電圧値	1.0VPP
	<offset></offset>	単位付きの電圧値	20V
	<seconds></seconds>	単位付きの時間	NS, S MS US
	<percent></percent>	パーセント数	単位なし
	<depth in<br="">percent></depth>		
	<cr+lf></cr+lf>	複数行として返信さ 載されています。キ (0x0d)とラインフィー の2バイトになりま	れる文字列に記 ャリッジリターン -ドコード(0x0a) す。
メッセージターミ ネータ	CR LF	ラインフィードコード キャリッジリターン	(new line)と
▲ 注意	LF EOI ターミナルプログ ^m が必要です。	ラインフィードコード IEEE-488 <i>EOI</i> (En ラムを使用している:	(new line) d-Or-Identify) 場合は、^j または
コマンドセパレー タ	スペース	スペースは、キーワ ダーからパラメータ 使用されます。	ード/コマンドヘッ を区切るために
	コロン (:)	コロン (:)は、各ノー するキーワードを区 されます。	ドの各ノードに関 別するのに使用
	セミコロン(;)	セミコロンは、同じノ ブコマンドに区別す す。 例: SOURce[1 2]:DCC SOURce[1 2]:OUT →SOURce1:DCO	'ードのレベルサ るのに使用しま Offset? 'Put? ffset OUTPut?

コロン + セミコ	ロ コロンとセミコロンは異なるノードレベ
ン (:;)	ルのコマンドを組み合わせるのに使
	用します。
	例:
	SOURce1:PM:SOURce?
	SOURce:PULSe:WIDTh?
	→SOURce1:PM:SOURce?:;SOU
	Rce:PULSe:WIDTh?
コンマ (,)	コマンドが複数のパラメータを使用す
	る場合、パラメータを区切るためにカ
	ンマを使用します。
	例:
	SOURce:APPLy:SQUare 10KHZ,
	2.0 VPP, -1V
コマンドリスト

488.2 共通	コマンド	217
	*IDN?	217
	*RST	217
	*TST?	217
	*OPC	218
	*OPC?	218
7 - 471	*WAI	218
ステーダスレ	インスタコマノト	219
	*EQE	219
	*ESR?	220
	*STB?	220
	*SRE	220
システムコマ	マンド	221
	SYSTem:FRRor?	
	SYSTem:LOCal	222
	SYSTem:REMote	222
	SYSTem:VERSion?	222
APPLy コマ	マンド	222
-	SOURce[1 2 3 3RF]:APPLy:SINusoid	224
	SOURce[1 2 3]:APPLy:SQUare	224
	SOURce[1 2 3]:APPLy:RAMP	225
	SOURce[1 2 3 Pulse]:APPLy:PULSe	225
	SOURce[1 2 3]:APPLy:NOISe	226
	SOURce[1 2 3]:APPLy:USER	226
	SOURce[1 2 3 pulse]:APPLy?	227
Output ⊐マ	?ンド	227
	SOURce[1 2 3]:FUNCtion	227
	SOURce[1 2 3 3RF pulse]:FREQuency	228
	SOURce[1]2]3 3RF pulse]:AMPlitude	230
	SOURce[1]2[3]3RF[pulse]:DCOffset	231
	SOURce[1]2[3]:SQUare:DCYCle	232
		232
	SUURCE[1]2 3 3RF]:PULSE:WIDTN	233
		234
		200 226
ᇮᇿᆿᇌᆮ		230
ハルス設定		231
	SOURCEPULSE:PULSe:WID1h	237
		238
		238
	SOURCEPULSE.PULSE: I KAINSILION: I KAIIINg	239

振幅変調(Al	M) コマンド	239
,	SOURce[1 2 3 3RF]:AM:STATe	240
	SOURce[1 2 3 3RF]:AM:SOURce	241
	SOURce[1 2 3 3RF]:AM:INTernal:FUNCtion	241
	SOURce[1 2 3 3RF]:AM:INTernal:FREQuency.	242
	SOURce[1 2 3 3RF]:AM:DEPTh	242
ASK 変調コ	マンド	243
	SOURce[3RF]:ASKey:STATe	244
	SOURce[3RF]:ASKey:SOURce	244
	SOURce[3RF]:ASK:AMPlitude	245
	SOURce[3RF]:ASKey:INTernal RATE	245
FM 変調コマ	′ンド	246
	SOURce[1 2 3 3RF]:FM:STATe	247
	SOURce[1]2 3 3RF1:FM:SOURce	247
	SOURce[1 2 3 3RF]:FM:INTernal:FUNCtion	248
	SOURce[1]2]3 3RF]:FM:INTernal:FREQuency.	249
	SOURce[1 2 3 3RF]:FM:DEViation	249
FSK 変調⊐ [.]	マンド	251
	SOURce[1 2 3 3RF]:FSKev:STATe	251
	SOURce[1 2 3 3RF]:FSKey:SOURce	252
	SOURce[1 2 3 3RF]:FSKey:FREQuency	252
	SOURce[1 2 3 3RF]:FSKey:INTernal:RATE	253
位相変調(Pl	M)コマンド	254
位相変調(Pl	M)コマンド SOURce[1]2]:PM:STATe	254
位相変調(P∣	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce	254 254 255
位相変調(Pl	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction	254 254 255 255
位相変調(Pl	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency.	254 254 255 255 256
位相変調(Pl	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation	254 254 255 255 256 257
位相変調(PI PSK 変調⊐	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation	254 254 255 255 256 257 257
位相変調(Pl PSK 変調コ	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF1:PSKev:STATe	254 254 255 255 256 257 257 258
位相変調(PI PSK 変調⊐	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:SOURce	254 254 255 256 257 257 257 258 258
位相変調(PI PSK 変調⊐	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:SOURce SOURce[3RF]:PSKey:PHASE	254 254 255 256 257 257 257 258 258 258 259
位相変調(PI PSK 変調⊐`	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:SOURce SOURce[3RF]:PSKey:PHASE SOURce[3RF]:PSKey:INTernal RATE	254 254 255 256 256 257 257 257 258 258 258 259 259
位相変調(PI PSK 変調⊐ SUM 変調⊐	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2]3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:SOURce SOURce[3RF]:PSKey:PHASE SOURce[3RF]:PSKey:INTernal RATE マンド	254 254 255 255 256 257 257 258 258 258 259 260
位相変調(PI PSK 変調⊐ SUM 変調⊐	M) コマンド SOURce[1 2]:PM:STATe SOURce[1 2]3 3RF]:PM:SOURce SOURce[1 2]3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:SOURce SOURce[3RF]:PSKey:PHASE SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[3RF]:PSKey:INTernal RATE	254 254 255 255 256 257 257 257 258 259 259 260 261
位相変調(PI PSK 変調⊐ SUM 変調⊐	M) コマンド SOURce[1 2]:PM:STATe SOURce[1 2]3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:SOURce SOURce[3RF]:PSKey:PHASE SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe	254 254 255 255 256 257 257 257 259 259 259 260 261 261
位相変調(PI PSK 変調⊐ SUM 変調⊐	M) コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:PHASE SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[3RF]:PSKey:INTernal RATE $\nabla 2 F$ SOURce[1]2]:SUM:STATe SOURce[1]2]:SUM:STATe SOURce[1]2]3:SUM:SOURce SOURce[1]2]3:SUM:INTernal:FUNction	254 254 255 255 256 257 257 257 258 259 260 261 261 262
位相変調(PI PSK 変調⊐ SUM 変調⊐	M) コマンド SOURce[1 2]:PM:STATe SOURce[1 2]3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:PHASE SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[1 2]:SUM:STATe SOURce[1 2]3:SUM:SOURce SOURce[1 2]3:SUM:INTernal:FUNction SOURce[1 2]3:SUM:INTernal:FREQuency	254 254 255 255 256 257 257 257 258 259 260 261 261 262 262
位相変調(PI PSK 変調⊐ SUM 変調⊐	M) コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:PHASE SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]3:SUM:SOURce SOURce[1 2]3:SUM:INTernal:FUNction SOURce[1 2]3:SUM:INTernal:FREQuency SOURce[1 2]3:SUM:INTernal:FREQuency SOURce[1 2]3:SUM:AMPLitude	254 255 255 256 257 257 257 258 259 260 261 261 262 262 262 263
位相変調(PI PSK 変調⊐ SUM 変調⊐	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:SOURce SOURce[3RF]:PSKey:PHASE SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:SOURce SOURce[1 2]:SUM:SOURce SOURce[1 2]:SUM:INTernal:FUNction SOURce[1 2]:SUM:INTernal:FUNction SOURce[1 2]:SUM:INTernal:FREQuency SOURce[1 2]:SUM:AMPLitude 調(PWM)コマンド	254 254 255 256 257 257 257 257 258 259 260 261 261 261 262 263 264
位相変調(PI PSK 変調コ SUM 変調コ パルス幅変調	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:PHASE SOURce[3RF]:PSKey:INTernal RATE SOURce[3RF]:PSKey:INTernal RATE SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:STATe SOURce[1 2]:SUM:SOURce SOURce[1 2]:SUM:INTernal:FREQuency SOURce[1 2]:SUM:INTernal:FREQuency SOURce[1 2]:SUM:AMPLitude 調(PWM)コマンド PWM 変調概要	254 254 255 256 257 257 257 257 257 258 259 260 261 261 262 263 264 264
位相変調(Pl PSK 変調コ SUM 変調コ パルス幅変調	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency. SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:SOURce SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[1 2]:SUM:STATe SOURce[1 2 3]:SUM:SOURce SOURce[1 2 3]:SUM:SOURce SOURce[1 2 3]:SUM:INTernal:FUNction SOURce[1 2 3]:SUM:INTernal:FREQuency SOURce[1 2 3]:SUM:INTernal:FREQuency SOURce[1 2 3]:SUM:AMPLitude III (PWM)コマンド PWM 変調概要 SOURce[1 2 3]:PWM:STATe	254 254 255 255 256 257 257 257 257 257 258 259 260 261 261 262 263 264 264 264
位相変調(Pl PSK 変調⊐ SUM 変調⊐ パルス幅変調	M)コマンド SOURce[1 2]:PM:STATe SOURce[1 2 3 3RF]:PM:SOURce SOURce[1 2 3 3RF]:PM:INTernal:FUNction SOURce[1 2 3 3RF]:PM:INTernal:FREQuency . SOURce[1 2 3 3RF]:PM:DEViation マンド SOURce[3RF]:PSKey:STATe SOURce[3RF]:PSKey:SOURce SOURce[3RF]:PSKey:INTernal RATE マンド SOURce[1 2]:SUM:STATe SOURce[1 2 3]:SUM:SOURce SOURce[1 2 3]:SUM:INTernal:FUNction SOURce[1 2 3]:SUM:INTernal:FREQuency SOURce[1 2 3]:SUM:INTernal:FREQuency SOURce[1 2 3]:SUM:AMPLitude 30 (PWM)コマンド PWM 変調概要 SOURce[1 2 3]:PWM:STATe SOURce[1 2 3]:PWM:STATe SOURce[1 2 3]:PWM:STATe SOURce[1 2 3]:PWM:STATe	254 254 255 255 256 257 257 257 257 257 257 258 259 260 261 261 262 263 264 264 264 264

SOURce[1 2 3]:PWM:INTernal:FREC	Quency 266
SOURce[1 2 3 3RF]:SWEep:STATe	
SOURce[1 2 3 3RF]:FREQuency:ST	ARt 269
SOURce[1 2 3 3RF]:FREQuency:ST	OP 269
SOURce[1 2 3 3RF]:FREQuency:CE	NTer 270
SOURce[1 2 3 3RF]:FREQuency:SP	AN 271
SOURce[1 2 3 3RF]:SWEep:SPACin	ıg 271
SOURce[1 2 3 3RF]:SWEep:TIME	
SOURce[1 2 3]:SWEep:SOURce	
OUTPut[1 2]:TRIGger:SLOPe	
OUTPut[1 2]:TRIGger	
SOURce[1 2]:MARKer:FREQuency.	
SOURce[1 2]:MARKer	
バーストモードコマンド	276
SOURce[1 2 3]:BURSt:STATe	
SOURce[1]2]3]:BURSt:MODE	
SOURce[1]2]3]:BURSt:NCYCles	
SOURce[1]2]3]:BURSt:INTernal:PEF	Riod 279
SOURce[1]2]3]:BURSt:PHASe	
SOURce[1]2[3]:BURSt:TRIGger:SOL	JRce 281
SOURce[1]2]3]:BURSt:TRIGger:DEL	ay
SOURce[1]2]3]:BURSt:TRIGger:SLC)Pe
SOURce[1 2 3]:BURSt:GATE:POLar	ity 283
SOURce[1]2]:BURSt:OUTPut:TRIGo	er:SLOPe 284
OUTPut[1]2]:TRIGger	
任意波形(ARB)コマンド	285
SOURce[1]2]3] EUNCtion USER	286
	286
SOURce[1]2 3]·ARB·FDIT·COPY	287
SOURce[1 2 3] ARB EDIT DEL ete	287
SOURce[1]2[3]:ARB:EDIT:DELete:A	11 288
SOURce[1]2[3]:ARB:EDIT:DELetter,	288
SOURce[1 2 3] ARB EDIT: UNF	289
SOURce[1]2[3]:ARB:EDIT:PROTect	289
SOURce[1]2[3]:ARB:EDIT:PROTect	AII 289
SOURce[1]2[3]:ARB:EDIT:UNProtec	t 290
SOURce[1]2]3] ARB NCYCles	290
SOURce[1]2[3] ARB OUTPut MARK	er 290
SOURce[1]2[3]:ARB:OUTPut	291
	201
COUNTERTVALUE?	

PHASE コマンド	293
SOURCE[1]2]pulse]:PHASe	293
SOURce[1]2 pulse]:PHASe:SYNChronize	293
SOURce[1]2[pulse]:PHASe:SYNChronize	293
SOURce1:PHASe:SYNChronize	293
COUPLE コマンド	294
SOURce[1]2]:FREQuency:COUPle:MODE	
SOURce[1]2]:FREQuency:COUPle:OFFSet	
SOURce[1]2]:FREQuency:COUPle:RATio	295
SOURce[1]2]:AMPlitude:COUPle:STATe	295
SOURce[1 2]:TRACk	296
セーブ・リコールコマンド	296
*SAV	
*RCL	297
MEMory:STATe:DELete	297
MEMory:STATe:DELete ALL	297

488.2 共通コマンド

*IDN?		
説明	本器の製造者 バージョンを返	、以下のようにシリアル番号、ファームウェア ミします
構文	*IDN?	
戻り値	<string></string>	社名,形名,シリアル,ソフトバージョンをカン マ区切りの文字列で返します。
例	*IDN?	
	GW INSTEK,	MFG-2216,SN:XXXXXXXX,Vm.mm
	本器の識別を	返します。
*RST		(Set)
説明	本器を工場出	荷時の状態に戻します。
<u> 入</u> 注意	*RST コマンド せん。	は、本体メモリに保存したものは削除されま
構文	*RST	
*TST?		
説明	セルフテ	ストの結果を応答します。
<u> 入</u> 注意	実際のエ	ラーの内容は SYST:ERR?を使用します。
構文	*TST?	
戻り値	+0	エラーなし
	+1	エラーあり
例	*TST?	
	+0	
	エラーな	L

*OPC	Set →
説明	このコマンドを実行すると、ファンクション・ジェネレータは、 保留中のすべての操作が完了した後、Standard イベントス テータスレジスタのオペレーションコンプリートビット(ビット 0)を設定します。本器では、* OPC コマンドは、バーストと スイープが完了したときを示すために使用されます。
<u>入</u> 注意	OPC ビットが設定される前に、他のコマンドを実行すること ができます。
構文	*OPC

*OPC?

-Query

説明	保留中のすべ を返します。本 トがセットされ1	ての操作が完了したときに出力バッファに1 器ではバースト、スイープが完了し OPC ビッ とときに応答します。
<u>∧</u> 注意	コマンドは*OP ません。	C?クエリが完了するまで実行することができ
構文	*OPC?	
戻り値	1	実行完了
クエリ例	*OPC? >1 動作が完了し	とさ、"1"を返します。

VVAI	*\	Λ	1	Ą	I
------	----	---	---	---	---

構文	*WAI
▲ 注意	バーストとスイープが完了するまで待つために使用されま す。
説明 	保留中のすべての動作が完了するまでコマンド実行を停止 します。本器ではバースト、スイープが完了し OPC ビットが セットされたときに次に進みます。

ステータスレジスタコマンド

*CLS				<u>Set</u> →
説明	* CLS コマンドは、すべてのイベントレジスタ、エラーキュー をクリアし、* OPC コマンドをキャンセルします。			
構文	*CLS			
*ESE				$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$
説明	Standa は、ステ タを設定 任意の めに設定 スタのビ	rd イベントステータ: ータス・バイト・イベン きすることができるコ ごット位置には 1、対 定。任意の有効なイ ジット 5(ESB)を設定	スイベン ット・サマ マンドを す応する べントは とします。	トレジスタ内のイベント 'リ・ビット(ESB)のレジス :決定を有効にします。 イベントを有効にするた 、、ステータス・バイト・レジ
<u>▲</u> 注意	* CLS コマンドは、イネーブルレジスタではなくイベントレジ スタをクリアします。			
構文	*ESE <nr1></nr1>			
パラメータ	<nr1></nr1>	0~255		
例	*ESE 20 ビット重み 20 を設定します (ビット 2 とビット 4)。			
構文	*ESE?			
戻り値	ビット	レジスタ	ビット	レジスタ
	0	未使用	4	出力キューにデータあ る場合にビットセット
	1	未使用	5	Standard イベント
	2	エラーキュー	6	マスターサマリ
	3	Questionable ス テータスのサマリ	7	未使用
クエリ例	*ESE? >4	/ -= -t		

ビット 2 を設定

*ESR?				
説明	Standar す。Star ります。	d イベントステータ ndard イベントステー	スレジス ータスレ	タを読み出し、クリアしま ジスタのビット重みが返
▲ 注意	同様に* リアしま	CLS は、Standard す。	イベント	・ステータスレジスタをク
構文	*ESR?			
戻り値	ビット	レジスタ	ビット	レジスタ
	0	操作完了	4	実行エラー
	1	未使用	5	コマンドエラー
	2	クエリエラー	6	未使用
	3	デバイスエラー	7	パワーオン時に ビットセット
) <u> </u>	>5 Standar す。(ビッ	d イベントステータ. ット 0 とビット 2).	スレジス	のビット重み"5"を返しま
*STB?				
説明	ステート	バイトコンディション	レジスタ	マの内容を読みます。
<u>入</u> 注意	ビット 6、	マスターサマリビッ	・トはクリ	アされません。
構文	*STB?			
クエリ例	*STB? >32 ステータ	スビットを返します	0	
*SRE				(Set)
説明	サービス	ペリクエストイネーブ	ルコマン	ドは MSS(マスタ・サマ

記り	リービスリクエストイネーフルコマントは MSS(マスダ・リマ
	リビット)を設定することを許可されているステータスバイト
	レジスタ内のどのイベントか判別します。"1"に設定されてい
	る任意のビットは、MSSビットがセットされることがありま
	す。

GWINSTEK

$\mathbf{\Lambda}$	* CLS コマンドは、イネーブルレジスタではなくステーク					
∠>注意	イトイベン	トレジスタをクリアし	ます。			
構文	*SRE <nr1></nr1>					
パラメータ	<nr1> 0~255</nr1>					
例	*SRE 12					
	サービス	リクエストイネーブル	レジスタ	ヌにビット重み 12(ビッ		
	ト2および	、3)を設定します。				
構文	*SRE?					
戻り値	ビット	レジスタ	ビット	レジスタ		
	0	未使用	4	出力キューにデータ		
				がある場合にセット		
	1	未使用	5	Standard イベント		
	2	エラーキュー	6	マスターサマリ		
	3	Questionable ス	7	未使用		
		テータスのサマリ				
クエリ例	*SRE?					
	>12					

ステータスバイトレジスタのビットウエイトを返します。

システムコマンド

SYSTem	:ERRor?	
説明	エラーキューを読み取ります。	
構文	SYSTem:ERRor?	
戻り値	<string></string>	エラー内容が戻ります。
例	SYSTem:ERRor?	
	-138 Suffix not allowed	
		-= 1 + +

バッファにあるエラー内容が文字で戻ります。

SYSTen	n:LOCal	<u>Set</u> →
説明	パネル操作が有効なローカル	モードにします。
構文	SYSTem:LOCal	
例	SYST:LOC	
SYSTen	n:REMote	(Set)
説明	パネル操作禁止のリモートモ-	ードにします。
構文	SYSTem:REMote	
例	SYST:REM	
SYSTen	n:VERSion?	
説明	バージョン情報を要求しま	す。
構文	SYSTem:VERSion?	
戻り値	<string></string>	
例	SYST:VERS?	
	MFG-2216 VX.X_XX	
	情報が応答されます。	

APPLy コマンド

APPLy コマンドは5種類の内蔵波形(Sine, Square, Ramp, Pulse, Noise)とUSERの選択が可能です。それぞれに周波数、振幅、オフセットを設定します。他の波形に関する設定はデフォルト値が設定されます。 トリガソースは内部(immediate)が選択され、バースト・スイープは解除されます。APPLy コマンドはカナラス出力が ON になります。終端インピー ダンスの設定は変更されません。

周波数、振幅、オフセットのパラメータを省略した場合は変化しません。

コマンドとパラメータの例は以下のようになります。

SOURce[1|2|3]:APPLy:SINusoid [<frequency> [,<amplitude> [,<offset>]]]

コマンドとクエリでヘッダが異なりますのでとりあつかいに注意してください。

- 出力周波数 出力周波数では、最小値、最大値、およびデフォルトを使用 できます。全ファンクションのデフォルト周波数は、1kHz に 設定されています。最大と最小の周波数は、使用されるファ ンクションに依存します。範囲外の出力周波数を指定した 場合、最大/最小周波数が代わりに使用されます。リモート 端末から"Data out range error will be generated"メッセー ジが返ります。
- 出力振幅 振幅を設定する場合は、最小値、最大値、およびデフォルト を使用することができます。範囲は、使用されている機能と インピーダンス設定(50Ωまたはハイインピーダンス)に依 存します。

すべてのファンクションのデフォルト振幅は 100 mVpp (50Ω) です。

振幅が設定されており、出力端子を50Ωからハイインピー ダンスに変更した場合、振幅が倍になります。ハイインピー ダンスから50Ωに出力終端を変更すると、振幅の半分にな ります。

Vrms、dBm または Vpp の単位は、現在のコマンドで使用 する出力単位を指定するために使用します。

APPLyコマンドで単位が指定されていない場合、VOLT: UNIコマンドで単位を設定するために使用できます。出力 端子がハイインピーダンスに設定されている場合は、dBm 単位を使用することはできません。デフォルトの単位は Vpp に設定されます。

出力振幅は、選択されたファンクションと単位によって影響 を受けます。Vpp、Vrms または dBm 値は、クレストファク タなどの違いにより、異なる最大値になります。5Vrms の方 形波は、正弦波では 3.536 Vrms に調整する必要がありま す。

DC オフセッ オフセットパラメータは、最小値、最大値、またはデフォルト ト電圧 に設定することができます。デフォルトのオフセットは 0V で す。下図のようにオフセットは出力振幅により制限されま す。 |Voffset| < Vmax – Vpp/2 指定された出力が範囲外の場合、最大オフセットが設定さ れます。 また、オフセットは出力インパーダンス設定(50Ω またはハ イインピーダンス)によって決まります。 オフセットが設定されていて、終端インピーダンス設定を 50Ω からハイインピーダンスに変更した場合は、オフセット が倍になります。ハイインピーダンスから 50Ω に終端インピ ーダンス設定を変更すると、オフセットが半分になります。

SOURce[1|2|3|3RF]:APPLy:SINusoid $(Set) \rightarrow$

 説明 コマンドが実行されると、選択したチャネルからの正弦波を 出力します。周波数、振幅、オフセットを設定することもでき ます。
構文 SOURce[1]2|3|3RF]:APPLy:SINusoid [<frequency>

	[, <ampiituue> [,<0iiset>]]]</ampiituue>		
パラメータ	<frequency></frequency>	1µHz~320MHz	
	<amplitude></amplitude>	1mVpp~10Vpp (50 Ω)	
	<offset></offset>	-4.99V~4.99V (50 Ω)	

例 SOUR1:APPL:SIN 2KHZ,MAX,0

正弦波、2kHz、振幅最大、オフセット 0V を設定します。

 振幅と DC オフセットの合計は、最大±5V(50Ω)です。振幅
注意 MAX、オフセット MAX を送信した場合、振幅が優先され設 定可能な最大値になります。

SOURce[1|2|3]:APPLy:SQUare

説明 コマンドが実行されると、選択したチャネルから方形波を出力します。周波数、振幅、オフセットを設定することもできます。デューティ・サイクルは 50%に設定されています。
構文 SOURce[1|2|3]:APPLy:SQUare [<frequency> [,<amplitude> [,<offset>]]]

列	SOUR1:APPL:SQU 2000,5.12	2,-1.0
	<offset></offset>	±5 Vpk ac +dc (50Ω)
	<amplitude></amplitude>	1mVpp~10Vpp (50Ω)
パラメータ	<frequency></frequency>	1µHz~25MHz

周波数を 2kHz に設定し振幅を 5.12Vpp、オフセットを-1.0Vdc に設定します。

振幅と DC オフセットの合計は、最大±5V(50Ω)です。振幅 MAX、オフセット MAX を送信した場合、振幅が優先され設 定可能な最大値になります。

SOURce[1|2|3]:APPLy:RAMP

(Set)→

説明	コマンドが実行されるとランプ波が出力されます。周波数、 振幅、オフセットを設定することもできます。シンメトリは、 100%に設定されています。		
構文	SOURce[1 2 3 4 4RF]:APPLy:RAMP [<frequency> [,<amplitude> [,<offset>]]]</offset></amplitude></frequency>		
パラメータ	<frequency></frequency>	1µHz~1MHz	
	<amplitude></amplitude>	1mVpp~10Vpp (50Ω)	
	<offset></offset>	±5 Vpk ac +dc (50Ω)	
例	SOUR1:APPL:RAMP 2KHZ,MAX,MAX		

周波数:2kHz、振幅、オフセットは最大に設定

説明 コマンドが実行されると、選択したチャネルからのパルス波 形を出力します。周波数、振幅、オフセットを設定することも できます。

SOURce[1|2]:PULS:WIDT で設定を実行した PW は保存 されます。エッジ、パルス幅がサポートされているレベルに 調整することができます。繰り返しレートは、周波数から近 似されます。正確なレートは、SOURce[1|2]:PULS:PER を 使用して調整する必要があります。 **G**^w**INSTEK**

構文	SOUR[1 2 3 pulse]:APPLy: [, <amplitude> [,<offset>]]]</offset></amplitude>	PULSe [<frequency></frequency>	
パラメータ	<frequency></frequency>	500µHz~25MHz	
	<amplitude></amplitude>	1mV~2.5 (50Ω)	
	<offset></offset>	±5 Vpk ac +dc (50Ω)	
例	SOUR1:APPL:PULS 1KHZ,	MIN,MAX	
	周波数を 1kHz に設定し、振幅 を最大値に設定します。	を最小に設定し、オフセット	
SOURce[1 2 3]:APPLy:NOISe	Set)	
説明	ガウスノイズを出力します。振ります。	幅とオフセットの設定ができ	
<u>入</u> 注意	周波数は、ノイズ機能では使用することはできませんが値 (またはデフォルト)を指定する必要があります。周波数は、 次に使用されるファンクションのために記憶しますが本機能 では使用しません。		
構文	SOURce[1 2 3 4 4RF]:APPI [<frequency default> [,<ar< td=""><td>₋y:NOISe nplitude> [,<offset>]]]</offset></td></ar<></frequency default>	₋y:NOISe nplitude> [, <offset>]]]</offset>	
パラメータ	<frequency></frequency>	Not applicable	
	<amplitude></amplitude>	1mV~10V (50Ω)	
	<offset></offset>	±5 Vpk ac +dc (50Ω)	
例	SOUR1:APPL:NOIS DEF, 3	.0, 1.0	
	振幅を 3V、オフセットを 1V の	ノイズを設定します。	
SOURce[1 2 3]:APPLy:USER	(Set)	
説明	任意波形を出力します。出力に 指定した設定になります。任意 SOURce[1 2]:ARB:BUILt:AR	は、FUNC:USER コマンドで 意波形はあらかじめ B で設定します。	

▲ 周波数と振幅は、DC 機能と一緒に使用することはできませんが値(またはデフォルト)を指定する必要があります。 値は、次に使用される機能のために記憶されています。

構文	SOURce[1 2 3]:APPLy:USER [<frequency> [,<amplitude> [,<offset>]]]</offset></amplitude></frequency>			
パラメータ	<frequency></frequency>		1µHz~100MHz	
	<amplitude></amplitude>		0~10V (50Ω)	
	<offset></offset>		±5 Vpk ac +dc (50Ω)	
Example	SOUR1:APPL	.:USER 1KHZ,5.	0,1.0	
	任意信号を出た	カします。		
SOURce[1 2 3 pulse]:/	APPLy?		
説明	現在の出力設定	現在の出力設定を文字列で出力します。		
▲ 注意	応答された文字列はそのまま APPLy コマンドで送信できます。			
構文	SOURce[1 2 3	3 pulse]:APPLy	?	
戻り値	<string></string>	Function, frequency, amplitude, offset		
例	SOUR1:APPL	SOUR1:APPL?		
	SIN +5.00000	00000000E+03,+	+3.0000E+00,-2.50E+00	
	正弦波, 5kHz, 3Vpp, -2.5V offset が設定されています。			

Output コマンド

Apply コマンドとは異なり、Output コマンドは個別の設定をおこなうための低レベルコマンドです。

SOURce[1 2	3]:FUNCtion	$\underbrace{\text{Set}}_{\qquad} \rightarrow \underbrace{\text{Query}}$
説明	波形の選択を行います。波形の名 設定されている設定値または初期	トパラメータは以前に 月値となります。
	周波数については、切換前の設定 の有効範囲に無い場合に範囲内	E値が切換後の波形 に調整されます。

周波数は最大周波数に、振幅は最大振幅となります。

各波形で利用できる変調が制限され、波形を変更する と設定できない変調は解除されます。

		正弦	方形	三角	ランプ	パルス	ノイズ	ARB
	AM	0	0	0	0	0	×	0
	FM	0	0	0	0	×	×	×
	PM	0	0	0	0	×	×	×
	ASK	0	×	×	×	×	×	×
	FSK	0	0	0	0	0	×	×
	PSK	0	×	×	×	×	×	×
	SWEEP	0	0	0	0	×	×	×
	BURST	0	0	0	0	×	×	×
構文	SOURc RAMP	e[1 2 PULS	3]:FUI e NOI	NCtior Se US	n {SINu ER}	lsoid \$	SQUa	re
例	SOUR1	:FUN	C SIN					
	正弦波。	を設定	します。	,				
クエリ	SOURce[1 2 3]:FUNCtion?							
応答構文	SIN, SQU, RAMP, PULS, NOIS, USER output type.							
応答例	SOUR1	:FUN	C?					
	ARB							
	出力波获	形は A	RBです	す。				
SOURce[1 2 3 3RF pulse]:FREQuency \rightarrow Query								
説明	選択したチャンネルの出力周波数を設定します。クエ リコマンドは、現在の周波数設定を返します。							
<u>!</u> 注意	最大周波数と最小周波数は、機種の最高周波数と波 形に依存します。							

	正弦波, 方形派	皮	1µHz~320MHz/25MHz
	ランプ波、三角	波	1µHz~1MHz
	パルス波		1µHz~25MHz
	ノイズ		設定なし
	任意波形		1µHz~100MHz
	ファンクション 設定が新しい 波数設定は、 す。方形波の が設定範囲で	モードが変更 モードでサポ 新しいモード ⁻ デュ ー ティサ- すが、周波数	されたとき、現在の周波数 ートされていない場合、周 で最も高い値に変更されま イクルは 0.01%~99.99% なに制限されます。
	周波数が変更 新しいモードで 数で利用可能 れ、"Settings	され、設定さ サポートされ な最も高いテ conflict"エラ	れたデューティサイクルが uていない場合、その周波 ^デ ューティサイクルが使用さ ーが発生します。
	SOURce[1 2 { <frequency:< th=""><th>3 3RF puls > MINimum</th><th>e]:FREQuency MAXimum}</th></frequency:<>	3 3RF puls > MINimum	e]:FREQuency MAXimum}
パラメータ	<frequency> MINimum</frequency>	周波数を設 最小出力周	定します。 波数を設定します。
	MAXimum	最大出力居	波数を設定します。
	MAXimum SOUR1:FRE	最大出力周 Q MAX	波数を設定します。
 例	MAXimum SOUR1:FRE 設定できる最高	最大出力周 Q MAX 高周波数を誘	波数を設定します。 定します。
 例 応答	MAXimum SOUR1:FRE 設定できる最子 SOURce[1]2	最大出力周 Q MAX 高周波数を認 3 3RF pulse	波数を設定します。 と定します。 e]:FREQuency?
例 応答 応答パラメータ	MAXimum SOUR1:FREの 設定できる最正 SOURce[1 2] <nr3></nr3>	最大出力周 Q MAX 高周波数を訪 3 3RF puls 周波数を応 MAX、MIN 波数を応答	l波数を設定します。 定します。 e]:FREQuency? 答します。パラメータに がある場合は最高・最低周 します。
例 応答 応答パラメータ 例	MAXimum SOUR1:FRE 設定できる最不 SOURce[1 2] <nr3> SOUR1:FRE</nr3>	最大出力周 Q MAX 高周波数を誘 3 3RF puls 周波数を応 MAX、MIN 波数を応答 Q? MAX	l波数を設定します。 定します。 e]:FREQuency? 答します。パラメータに がある場合は最高・最低周 します。
例 応答 応答パラメータ 例	MAXimum SOUR1:FRE 設定できる最存 SOURce[1 2] <nr3> SOUR1:FRE +6.00000000</nr3>	最大出力馬 Q MAX 高周波数を誘 3 3RF puls 周波数を応 MAX、MIN 波数を応答 Q? MAX 00000E+07	波数を設定します。 定します。 e]:FREQuency? 答します。パラメータに がある場合は最高・最低周 します。

設定可能な最高周波数を応答します。

SOURce[1 2 3	3 3RF pulse]	:AMPlitude	$\underbrace{\text{Set}}_{\bigoplus}$
説明	選択したチャン	・ネルの出力振幅を	設定します。
	振幅の最大値 依存します。初 端をハイインピ ます。オフセッ ます。 Voffset < V	と最小振幅は、出 り期値は 50Ω 時に ーダンスにすると トと振幅は、次の方 max – Vpp/2	コ端子の終端設定に 100mVpp です。終 最幅表示は倍になり 程式で関連づけされ
	出力端子の設 る場合、dBm は、Vppです。 ユニットに影響 値は、クレスト・ す。5Vrmsの 3.536Vrmsに	定がハイインピータ 単位は使用できませ 出力振幅は、選択 を受けます。Vpp、 ファクタなどにより ち形波は、正弦波で 調整する必要があり	シスに設定されてい さん。単位の初期値 したファンクションと Vrms または dBm 最大値が異なりま だは最大値を ります。
	振幅単位は、\ SOURce[1 2 3 用される度に明	/OLT:UNIT のコマン 3 3RF pulse]:AMP 月確に使用されます	ッドで指定し、 litude コマンドが使 ·。
構文	SOURce[1 2 amplitude>	3 3RF pulse]:AM MINimum MAXim	Plitude {< um}
パラメータ	<amplitude></amplitude>	出力振幅の設定	
	MINimum	最小出力振幅の認	 没定
	MAXimum	最大出力振幅の認	没定
例	SOUR1:AMP	MAX	
	現在のモードで	で最大振幅を設定し	ます。
応答	SOURce[1 2 {MINimum M	3 3RF pulse]:AM AXimum}	Plitude?
パラメータ	<nr3></nr3>	現在の振幅を返し	ます。
Example	SOUR1:AMP	? MAX	
	+8.000E+00		
	現在のファンク す。	ションで設定できる	最大振幅は 8V で

SOURce[1 2	SOURce[1 2 3 3RF pulse]:DCOffset \rightarrow Query)				
説明	選択したチャ	ャンネルの DC オフセ	ヱットを設定します。		
<u>/</u> 注意	DC オフセッ できます。デ の最大値と	トは数値、最大、最/ ジォルトは 0V です。 振幅によって以下の	小、デフォルトが設定 ,最大値は出力電圧 ように制限されます。		
	VOTISEt < V	v <i>max</i> – vpp/2			
	制限範囲を す。また、オ ンピーダンス 定されていて スに変更し イインピーダ オフセット表	超えた設定をすると フセットは、出力終端 ()によって決定され て、出力終端を 50Ω に場合、オフセット表 ジスから 50Ω に出 示が 2 分の 1 になり	最大値が設定されま 端(50Ω またはハイイ ます。オフセットが設 からハイインピーダン 示が倍になります。ハ カ終端を変更すると、 ります。		
構文	SOURce[1 2 3 3RF pulse]:DCOffset {< offset> MINimum MAXimum}				
パラメータ	<offset></offset>	オフセット電圧値			
	MINimum	負電圧の最大値を	設定します。		
	MAXimum	正電圧の最大値を	設定します。		
例	SOUR1:DO	O MAX			
	オフセットを	正の最大値に設定し	<i>、</i> ます。		
応答構文	SOURce[1 2 3 3RF pulse]:DCOffset? {MINimum MAXimum}				
応答パラメータ	<nr3></nr3>	現在のモードでオ	フセット値を返します。		
例	SOUR1:DO	:0?			
	+1.00E+00				
	現在のモー	ドのオフセット値は+3	3V です。		

SOURce[1	2 3]:SQUare:DCYCle	$\underbrace{\text{Set}}_{\rightarrow}$		
説明	方形波のデューティサイクルの 変更されても、設定は保存され ーティサイクルは、50%です。	方形波のデューティサイクルの設定をします。波形が 変更されても、設定は保存されます。デフォルトのデュ ーティサイクルは、50%です。		
<u> 注意</u>	方形波のデューティサイクルは 定範囲ですが、周波数に制限 更され、設定されたデューティ でサポートされていない場合、 な最も高いデューティサイクル conflict"エラーが発生します。	は 0.01%~99.99%が設 されます。周波数が変 サイクルが新しいモード その周波数で利用可能 が使用され、"Settings		
Syntax	SOURce[1 2 3]:SQUare:D0 MINimum MAXimum}	CYCle {< percent>		
パラメータ	<percent> デューティサイク MINimum 最小デューティ MAXimum 最大デューティ</percent>	クルを%で設定します。 ナイクルを設定します。 ナイクルを設定します。		
例	SOUR1:SQU:DCYC MAX 現在の周波数で使用可能な ルを設定します。	曼大のデューティサイク		
応答構文	SOURce[1 2 3]:SQUare:D0 MAXimum}	CYCle? {MINimum		
パラメータ	<nr3> デューティーサイ</nr3>	イクルを返します。		
Example	SOUR1:SQU:DCYC? +9.90E+01 デューティーサイクルは 99% ⁻	です		
SOURce[1	2 3]:RAMP:SYMMetry	Set Query		
	ランプ波のシンメトリのみの設 モードが変更された場合、シン す。 デフォルトのシンメトリは、	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー		

<u>!</u> 注意	ランプ波形の場合、APPlyコマンドと AM/FM 変調モー ドは、現在のシンメトリ設定を無視します。		
構文	SOURce[1 2 3]:RAMP:SYMMetry {< percent> MINimum MAXimum}		
パラメータ	<percent> 0.0~100.0%を設定します。 MINimum 最小時間を設定します。 MAXimum 最大時間を設定します。</percent>		
例	SOUR1:RAMP:SYMM +5.00E+01		
	シンメトリを 50%に設定します。		
応答構文	SOURce[1 2 3]:RAMP:SYMMetry? {MINimum MAXimum}		
パラメータ	<nr3> シンメトリをパーセンテージで返します。</nr3>		
Example	SOUR1:RAMP:SYMMetry?		
	+5.00E+01		
	シンメトリは 50%です。		
SOURce[1	2 3 3RF]:PULSe:WIDTh →Query		
説明	選択したチャンネルのパルス幅を設定します。初期値 は 50us です。パルス幅は立上りから立下りの 50%の 閾値の間の時間です。		
/\	パルス幅は以下の設定範囲です。:		
△・△注忌	Pulse Width ≥ Minimum Pulse Width		
	Pulse Width < Pulse Period - Minimum Pulse		
	Width		
構文	SOURCEPULSE:PULSe:WIDTh { <seconds> MINimum MAXimum}</seconds>		
パラメータ	<seconds> パルス幅を秒で設定します。 MINimum 最小時間を設定します。 MAXimum 最大時間を設定します。</seconds>		
例	SOURCEPULSE:PULS:WIDT MAX		
	パルス幅を最大に設定します。		

応答構文	SOURCEPULSE:PULSe:WIDTh?	
	[MINimum MAXimum]	
パラメータ	<nr3> パルス幅を秒で返します。</nr3>	
Example	SOURCEPULSE:PULS:WIDT?	
	+2.00000000000E-08	
	パルス幅は 20ns です。	
	Set	
OUTPut	Query	
説明	選択したチャンネルの出力をオン/オフします。初期値 はオフです。	
<u>/</u> 注意	出力が外部電圧によって過負荷になり、出力がオフに なると、エラーメッセージが表示されます。出力をコマ ンドではなく再度オンする前に、最初に過負荷状態を 解消しておく必要があります。	
	Apply コマンドは使用すると出力を ON に設定します。	
構文	OUTPut[1 2 3 3RF pulse] {OFF ON}	
例	OUTP1 ON	
	ch1をONします。	
応答構文	OUTPut[1 2 3 3RF pulse]?	
応答パラメータ	1 ON	
	0 OFF	
例	OUTP1?	
	1	
	ch1 は出力オンです。	

(Set)-

OUTPut[1 2 3 3RF pulse]:LOAD →Query				
説明	終端インピー INFinity(ハイ ーダンス設定 に設定しても い場合、振幅	終端インピーダンスの設定をします。DEFault(50Ω)と INFinity(ハイインピーダンス> 10kΩ)の2つのインピ ーダンス設定を選択することが可能です。終端を50Ω に設定しても実際の負荷インピーダンスが50Ωでな い場合、振幅とオフセットは正しくありません。		
<u> 注</u> 意	振幅が設定済みの時に、終端インピーダンス設定を 50Ωからハイインピーダンスに変更した場合、振幅表 示が倍になります。終端インピーダンス設定をハイイン ピーダンスから50Ωに変更すると、振幅表示が半分 になります。終端インピーダンス設定がハイインピーダ ンスに設定されている場合、dBm単位を使用すること はできません。			
構文	OUTPut[1 2 3 3RF pulse]:LOAD {DEFault INFinity}			
例	OUTP1:LOAD DEF			
	ch1の終端₁	インピーダンスを	を50Ωに設定します。	
応答構文	OUTPut[1 2	2 3 3RF PULS	e]:LOAD?	
応答パラメータ	DEF	50Ω		
	INF	ハイインピーダ	ダンス	
Example OUTP1:LOAD? DEF				
終端インピーダンスは 50Ω です。			です。	

SOURCE[1	2 3 3RF pı	Set → ulse]:VOLTage:UNIT →Query		
説明	出力振幅 VRMSと	出力振幅、オフセットの単位を設定します。VPP、 VRMSとDBMの3つの単位があります。		
<u> 注</u> 意	異なる単位 り、VOLTa ての振幅の す。 出力インヒ ている場合 単位は、目	異なる単位が特定のコマンドで使用されていない限 り、VOLTage:UNITコマンドで設定された単位は、全 ての振幅の単位のデフォルトの単位として使用されま す。 出力インピーダンスがハイインピーダンスに設定され ている場合、dBm 単位を使用することはできません。 単位は、自動的に Vpp にデフォルト設定されます。		
構文	SOURCE {VPP VR	SOURCE[1 2 3 3RF pulse]:VOLTage:UNIT {VPP VRMS DBM}		
例	SOURCE	SOURCEPULSE:VOLT:UNIT VPP		
振幅単位を Vpp に設定し		を Vpp に設定します。		
応答構文	SOURCE	PULSE:VOLTage:UNIT?		
パラメータ	VPP	Vpp		
	VRMS	Vrms		
	DBM	dBm		
Example SOURCEPULSE		PULSE:VOLT:UNIT?		
	VPP			
	振幅の単位は、 Vpp です。			

パルス設定コマンド

Pulse 設定コマンドはパルス出力チャンネルの各項目の設定を行いま す。立上がり時間、立下がり時間、周期とパルス幅の設定が可能です。

90% 50% パルス の 立上り時間	周期 90% 50% 0% 立下り時間		
SOURCEPUL	.SE:PULSe:\	WIDTh	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$
説明	パルス幅を設定します。初期値は 50us です。 パルス幅は、しきい値 50%で立上がりエッジから立下 がりエッジまでの時間として定義されます。		
<u>!</u> 注意	パルス幅の設定値は以下の制限があります。 パルス幅 ≥ 最小パルス幅 パルス幅 < パルス周期 - 最小パルス幅		
構文	SOURCEPULSE:PULSe:WIDTh { <nr3> MINimum MAXimum} (秒)</nr3>		
例	SOURCEPULSE:PULS:WIDT MAX		
	現在のモードで最大振幅を設定します。		
応答構文	SOURCEPULSE:PULSe:WIDTh? [MINimum MAXimum]		
応答パラメータ	<nr3></nr3>	(秒)	
		最小値は周波数に	こ制限されます。
例	SOURCEPUL	SE:PULS:WIDT?	,
	+2.00000000	0000E-08	
	· · · ·		

パルス幅は 20 ns です。

SOURCEPU	LSE:PULSe:DCYCle	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$		
説明	パルスのデューティサイクルを設	定します。		
<u>/</u> 注意	デューティサイクルの設定値は以下の制限があります。 す。 デューティ≥ 100 × 最小パルス幅÷パルス周期 デューティ < 100×(1-最小パルス幅 ÷ パルス周期)			
 構文	SOURCEPULSE:PULSe:DCY MINimum MAXimum} (%)	SOURCEPULSE:PULSe:DCYCle{ <nr3> MINimum MAXimum} (%)</nr3>		
例	SOURCEPULSE:PULS:DCYC	MAX		
	デューティサイクルを最大にしま	す。		
応答構文	SOURCEPULSE:PULSe:DCYCle? [MINimum MAXimum]			
応答パラメータ	<nr3> 0.01%~99.99%</nr3>			
例	SOURCEPULSE:PULS:PULS:DCYC?			
	+1.0000E+01			
	デューティサイクルは 10%です。			
SOURCEPUL	SE:PULSe:TRANsition:LEAD	ing \rightarrow Query		
説明	パルスの立上り時間を設定します。初期値は 10ns と なります。			
∠•注息	Edge Time ≤ 0.625 × パルス幅			
構文	SOURCEPULSE:PULSe:TRANsition:LEADing { <nr3> MINimum MAXimum} (秒)</nr3>			
例	SOURCEPULSE:PULS:TRAN MAX	Isition:LEADing		
	立上り時間を最大に設定します。			
応答構文 	SOURCEPULSE:PULSe:TRANsition:LEADing? [MINimum MAXimum]			

	<nr3></nr3>	立上り時間	
例	SOURCEPULSE:PULS:TRANsition:LEADing?		
	+8.0000E-08	3	
	立上りは 80r	nsです。	
SOURCEPULS	E:PULSe:T	$\begin{array}{c} & (\text{Set}) \rightarrow \\ \hline \\ \text{RANsition:TRAIling} \rightarrow (Query) \end{array}$	
説明	パルスの立つ となります。	「がり時間を設定します。初期値は 10ns	
	立下がり時間	は以下の制限があります。	
∠•_注息	Edge Time ≤ 0.625 × パルス幅		
構文	SOURCEPULSE:PULSe:TRANsition:TRAIIing { <seconds> MINimum MAXimum}</seconds>		
例	SOURCEPU MAX	ILSE:PULS:TRANsition:TRAIling	
	立下がり時間	を最大に設定します。	
応答構文	SOURCEPU [MINimum N	ILSE:PULSe:TRANsition:TRAIIing? MAXimum]	
応答パラメータ	<nr3></nr3>	立下り時間	
例	SOURCEPU	ILSE:PULS:TRANsition:TRAIling?	
	+8.0000E-08	3	
	立下りは 80r	nsです。	

振幅変調(AM) コマンド

AM 変調の概要

G^W**INSTEK**

振幅変調の設定手順は以下の通りです。

1. AM 変調を有	SOURce[1 2 3 3RF]:AM:STAT ON コマンドで AM 変
効にします。	調をオンにします。

G^{^wINSTEK}

2.	キャリアの構	APPLy コマンドでキャリア波形を選択します。
	成	あるいは同等の FUNC、FREQ、AMPL、DCOffs コマ
		ンドで、指定した周波数、振幅とオフセットのキャリア波
		形を作成することができます。
3.	変調ソースの	SOURce[1 2 3 3RF]:AM:MOD:INP コマンドで内部変
	選択	調ソースまたは外部変調ソースを選択します。
4.	波形の選択	SOURce[1 2 3 3RF]:AM:INT:FUNC コマンドで正弦
		波、方形波、上昇・下降ランプ、三角波を変調波形とし
		て選択できます。内部ソースのみ使用可能です。
5.	変調周波数の	SOURce[1 2 3 3RF]: AM:INT:FREQ コマンドで変調
	設定	周波数を設定します。
		内部ソースのみ使用可能です。
6.	変調度を設定	SOURce[1 2 3 3RF]: AM:DEPT コマンドで変調度を
	します。	設定します。

SOURce[1|2|3|3RF]:AM:STATe

 $\underbrace{\text{Set}}_{\rightarrow}$

説明	AM 変 AM 変 ラメータ	AM 変調を設定または無効にします。 デフォルトでは AM 変調が無効になっています。 AM 変調は、他のパ ラメータを設定する前に有効にする必要があります。		
<u>/</u> 注意	AM 変 ープモ・ ている。 ん。他の	AM 変調が有効になっているとき、バーストまたはスイ ープモードは無効になります。AM 変調が有効になっ ているときに、同時に他の変調モードは使用できませ ん。他の変調モードは無効になります。		
構文	SOUR	SOURce[1 2 3 3RF]:AM:STATe {OFF ON}		
例	SOUR	SOUR1:AM:STAT ON		
	AM 変	AM 変調をオンします。		
構文	SOUR	ce[1 2 3 3RF]:AM:STATe?		
パラメータ	0	無効 (OFF)		
	1	有効 (ON)		
例	SOUR	SOUR1:AM:STAT?		
	1			
	AM 変調はオンです。			

(Set)-	→
_		ry)

SOURce[1|2|3|3RF]:AM:SOURce

説明	変調信号を	内部・外部から選択します。			
/ 注意	外部変調ソ ネルの MO れます。 変調 で最大振幅	ースを選択された場合、変訂 D入力端子から入力される= 調度は 100%に設定されてし となり、-5V で最小振幅とな	周度は背面パ £5V に制限さ いる場合、+5V ります。		
構文	SOURce[1 EXTernal}	2 3 3RF]:AM:SOURce {II	NTernal		
例	SOUR1:A	M:SOUR EXT			
	変調ソース	を外部に設定します。			
構文	SOURce[1	2 3 3RF]:AM:SOURce?			
パラメータ	INT	内部信号			
	EXT	外部信 号			
例	SOUR1:AN	M:SOUR?			
	変調ソース	は内部です。			
SOURce[1 2 3	3 3RF]:AM	I:INTernal:FUNCtion	Set → →Query		
説明	変調波形を 降ランプ波 波です。	正弦波方形波、三角波、上り から設定します。 デフォルトの	昇ランプ波、下)波形は、正弦		
<u> 注意</u>	方形波と三 ランプ波の3 トリは、0%	角波はデューティサイクル 5 シンメトリは、100%。下降ラ: です。	0%です。上昇 ンプ波のシンメ		
構文	SOURce[1 2 3 3RF]:AM:INTernal:FUNCtion {SINusoid SQUare TRIangle UPRamp DNRamp}				
例	SOUR1:A	M:INT:FUNC SIN			
	AM 変調の	波形を正弦波に設定します。			
構文	SOURce[1	2 3 3RF]:AM:INTernal:F	UNCtion?		

GWINSTER	(MFG-2	2000 シリース	、ユーザーマニュアル 		
パラメータ	SIN	正弦波	UPRAMP	上昇ランプ波		
	SQU	方形波	DNRAMP	下降ランプ波		
	TRI	三角波				
	SOUR1:AM	I:INT:FUI	NC?			
	SIN					
	変調波の波	形は正弦	皮です。			
SOURce[1 2 3	3 3RF]:AM:IN	NTernal:F	REQuency	$\underbrace{\text{Set}}_{V} \longrightarrow \underbrace{\text{Query}}_{V}$		
説明	内部変調波 ォルトの周波	形の場合の 支数は、10	のみ周波数を 0Hz です。	設定します。デフ		
構文	SOURce[1 { <nr3> MI</nr3>	2 3 3RF]: Nimum N	AM:INTerna IAXimum}	al:FREQuency		
パラメータ	<nr3:frequ< td=""><td colspan="4"><nr3:frequency> 2 mHz~ 20 kHz</nr3:frequency></td></nr3:frequ<>	<nr3:frequency> 2 mHz~ 20 kHz</nr3:frequency>				
例	SOUR1:AM	IINT:FRE	EQ +1.0000E	E+02		
	変調周波数を 100Hz に設定します。					
	SOURce[1 [MINimum	2 3 3RF]: MAXimu	:AM:INTerna m]	al:FREQuency?		
戻り値	<nr3></nr3>	変	5調周波数を	Hz で返します。		
例	SOUR1:AM	I:INT:FRE	EQ?			
	+1.000000E+02					
	変調周波数は 100Hz です。					
				Set →		
SOURce[1 2	3 3RF]:AM	:DEPTh				
説明	内部変調の ります。	変調度を言	殳定します。 褚	刃期値は 100%とな		
<u>!</u> 注意	変調度に関 力しません。	係なく、出 ,外部ソー:	カは±5V(50) スの変調度は	Ω負荷)以上を出 t、		
	SOURce[1]2]:AM:DEPTh コマンドの設定ではなく					

構文	SOURce[1 2 3 percent> MIN	SOURce[1 2 3 3RF]:AM:DEPTh { <depth in<br="">percent> MINimum MAXimum}</depth>			
パラメータ	<nr3:depth></nr3:depth>	0~120%			
	MINimum	最小値の設定(0%)			
	MAXimum	最大値の設定(120%)			
例	SOUR1:AM:D	SOUR1:AM:DEPT 50			
	変調度を 50%に設定します。				
構文	SOURce[1 2 3 [MINimum MA	SOURce[1 2 3 3RF]:AM:DEPTh? [MINimum MAXimum]			
戻り値	<nr3></nr3>				
例	SOUR1:AM:DEPT?				
	+5.0000E+01	+5.0000E+01			
	変調度は 50%-	変調度は 50%です。			

ASK 変調コマンド

ASK 変調の概要

ASK 変調波形の設定は、以下の順にコマンドを実行する必要があります。

しまり 変調をすうにしまり。	
2. キャリアの構成 APPLy コマンドでキャリア波形を選択します	•
あるいは同等の FUNC、FREQ、AMPL、D	COffs
コマンドで、指定した周波数、振幅とオフセッ	トの
キャリア波形を作成することができます。	
3. FSK ソースの選択 SOURce[3RF]:ASK:SOUR コマンドで内部	ソー
スまたは外部ソースを選択します。	
4. FSK ホップ周波数 SOURce[3RF]:ASK:FREQ コマンドでホッフ	プ周
の選択 波数を設定します。	
5. FSK レートの設定 内部ソースのときのみ SOURce[3RF]:ASK	:INT:
RATE コマンドで ASK レートを設定します。	

SOURce[3I	RF]:ASKe	y:STATe	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$		
説明	ASK 変 ASK 変 有効にす	調を設定または無効 調が無効です。他の。 する必要があります。	にします。デフォルトでは パラメータを設定する前に		
<u> 注意</u>	ASK 変 ープモー ていると ん。他の	調が有効になっている -ドは無効になります。 きに、同時に他の変 の変調モードは無効に	ると、バーストまたはスイ 。FSK 変調が有効になっ 調モードは使用できませ なります。		
構文	SOUR[3RF]:ASK:STATe {	OFF ON}		
例	SOUR	SOURce3RF:ASK:STAT ON			
	ASK 変	調をオンします。			
応答	SOUR	e[3RF]:ASK:STAT	e?		
パラメータ	0	無効(OFF)			
	1	有効 (ON)			
例	SOURce3RF:ASK:STAT?				
	1				
	有効です	†。			
SOURce[3I	RF]:ASKe	y:SOURce	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$		
説明	変調ソ− スの初≸	−スを内部または外音 明値は内部です。	『に設定します。変調ソー		
<u>!</u> 注意	現在の/ ん。	バージョンでは外部入	.カをサポートしていませ		
構文	SOURc {INTerr	e[3RF]:ASKey:SO al EXTernal}	URce		
例	SOUR	e3RF:ASK:SOUR	NT		
	内部を打	旨定します。			
応答	SOUR	e[3RF]:ASKey:SO	URce?		

G≝INSTEK

パラメータ	INT	内部		
	EXT	外部		
例	SOURce3RF:ASK:SOUR?			
	INT			
	内部信	言号です。		
				(Set)→
SOURce[3RF]:ASK	:AMPlitude)	
説明	ASK 🗿	変調の振幅を	設定します。初]期値は 0.5V です。
<u> 注意</u>	ASK 3	変調の変調波	はデューティき	50%の方形波です。
構文	SOUF	ce[3RF]:AS	Key:AMPlitu	de
	{ <volt< td=""><td>age> MINim</td><td>um MAXimu</td><td>m}</td></volt<>	age> MINim	um MAXimu	m}
パラメータ	<nr3:amplitude> 0V~max</nr3:amplitude>			
例	SOURce3RF:ASK:AMPlitude 0.5V			
	ASK ‡	辰幅を 0.5V に	します。	
応答	SOUF [MINii	Rce[3RF]:AS mum MAXim	Key: AMPlitu num]	ude?
パラメータ	<nr3< td=""><td>></td><td>ASK 変調の掛</td><td>辰幅を返します。</td></nr3<>	>	ASK 変調の掛	辰幅を返します。
例	SOUF	ce3RF:ASK	:AMPlitude	
	5.000	E-01		
	ASK 排	辰幅は 0.5V て	ごす	
				(Set)→
SOURce[3RF]:ASK	ey:INTerna	al RATE	
説明	内部ン	ースのときの	ASK レートを	設定します。
注意	外部ン	ースの場合こ	.のコマンドは\$	無視されます。
構文	SOUF Hz> I	ce[3RF]:AS MINimum M/	Key:INTerna \Ximum}	I:RATE { <rate in<="" td=""></rate>

パラメータ	<nr3:rate hz="" in=""> 2 MHz~1MHz</nr3:rate>				
	MINimum	最小周波数を設定します。			
	MAXimum	最大周波数を設定します。			
例	SOURce3RF:ASK	SOURce3RF:ASK:INT:RATE MAX			
	最大周波数を設定します。				
応答	SOURce[3RF]:AS [MINimum MAXin	SOURce[3RF]:ASKey:INTernal:RATE? [MINimum MAXimum]			
パラメータ	<nr3></nr3>	ASK レートを応答します。			
例	SOURce3RF:ASK	SOURce3RF:ASK:INT:RATE?			
	レートは 1MHz です	レートは 1MHz です。			

FM 変調コマンド

FM 変調の概要

FΜ	変調波形の設	定は、以下の順にコマンドを実行する必要があります。
		SOURce[1 2 3 3RF]: FM:STAT ON コマンドで FM
1.	FM 変調を有	変調をオンにします。
	効にします	
		APPLy コマンドでキャリア波形を選択します。
2.	キャリアの構	あるいは同等の FUNC、FREQ、AMPL、DCOffs コマ
	成	ンドで、指定した周波数、振幅とオフセットのキャリア
		波形を作成することができます。
		SOURce[1 2 3 3RF]:FM:SOUR コマンドで内部ソー
3.	ソースの選択	スまたは外部ソースを選択します。
		SOURce[1 2 3 3RF]:FM:INT:FUNC コマンドで正弦
4.	波形の選択	波、方形波、上昇・下降ランプ、三角波を変調波形とし
		て選択できます。内部ソースのみ使用可能です。
		SOURce[1 2 3 3RF]: FM:INT:FREQ コマンドで変調
5.	変調周波数の	周波数を設定します。
	設定	内部ソースのみ使用可能です。
		SOURce[1 2 3 3RF]:FM:DEV コマンドで変調度を設
~	本田内の見ら	

6. 変調度の設定 定します。

G≝INSTEK

リモートインタフェース

SOURce[1 2 3	3RF]:FM:	STATe	Set → Query	
説明	FM 変調を設定または無効にします。 デフォルトでは FM 変調が無効になっています。 FM 変調は、他のパ ラメータを設定する前に有効にする必要があります。			
注意	FM 変調が有効になっているとき、バーストまたはスイ ープモードは無効になります。FM 変調が有効になっ ているときに、同時に他の変調モードは使用できませ ん。他の変調モードは無効になります。			
	SOUR[1 2 3	3RF]:FM:STATe {	OFF ON}	
例	SOUR1:FM:	STAT ON		
	FM 変調をオン	ンします。		
構文	SOURce[1 2	3 3RF]:FM:STAT	e?	
パラメータ	0	無効 (OFF)		
	1	有効 (ON)		
例	SOUR1:FM:	STAT?		
	1			
	FM 変調はオ	ンです。		
SOURce[1 2 3	3RF]:FM:	SOURce	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$	
説明	変調信号を内]部・外部から選択し	ます。	
/ 注意	外部変調ソースを選択された場合、変調度は背面パ ネルの MOD 入力端子から入力される±5V に制限さ れます。変調度は 100%に設定されている場合、+5V で最大偏移となり、-5V で最小偏移となります。			
構文	SOURce[1 2 3 3RF]:FM:SOURce {INTernal EXTernal}			
例	SOUR1:FM:	SOUR EXT		
	変調ソースを	外部に設定します。		
構文	SOURce[1 2	3 3RF]:FM:SOUR	ce?	

G≝INSTEK

MFG-2000 シリーズ ユーザーマニュアル

パラメータ	INT		内部信号	
	EXT		外部信号	
Example	SOUR1:FM:SOUR? INT			
	変調ソースは	内部です。	þ	
SOURce[1 2 3 FUNCtion	3 3RF]:FM:I	NTernal		et → Query
説明	変調波形を正 降ランプ波か 波です。	E弦波方形 ら設定しま	波、三角波、上 ᢏす。 デフォルト(昇ランプ波、下 の波形は、正弦
<u> </u>	方形波と三角波はデューティサイクル 50%です。上昇 ランプ波のシンメトリは、100%。下降ランプ波のシンメ トリは、0%です。			
構文	SOURce[1 2 {SINusoid S	2 3 3RF]:F QUare T	FM:INTernal:F Rlangle UPRa	UNCtion mp DNRamp}
例	SOUR1:FM:	INT:FUN	C SIN	
	FM 変調の波	形を正弦	波に設定します	0
構文	SOURce[1 2	2 3 3RF]:F	-M:INTernal:F	UNCtion?
パラメータ	SIN	正弦波	UPRAMP	上昇ランプ波
	SQU	方形波	DNRAMP	下降ランプ波
	TRI	三角波		
例	SOUR1:FM:	INT:FUN	C?	
	SIN			

変調波の波形は正弦波です。
SOURce[1 :FREQuenc	2 3 3RF]:FM:INTernal ÿ	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$
説明	内部変調波形の場合のみ オルトの周波数は、10Hz	・周波数を設定します。デフ です。
構文	SOURce[1 2 3 3RF]:FM { <frequency> MINimun</frequency>	:INTernal:FREQuency n MAXimum}
パラメータ	<frequency> 2 MHz</frequency>	~ 20 kHz
例	SOUR1:FM:INT:FREQ	100
	変調周波数を 100Hz に該	没定します。
構文	SOURce[1 2 3 3RF]:FM [MINimum MAXimum]	:INTernal:FREQuency?
戻り値	<nr3> 変調周</nr3>	波数を Hz で返します。
例	SOUR1:FM:INT:FREQ?	,
	+1.0000E+02	
	変調周波数は 100Hz です	+。
SOURce[1	2 3 3RF]:FM:DEViation	Set → →Query
説明	キャリア波形から変調波の ます。ピーク偏差の初期値	ンピーク周波数偏差を設定 重は、100Hz です。
	外部ソースの周波数偏差 入力端子に入力される±5 ます。正(0~+5V)の信号 周波数偏差)を大きくし、負 偏差を減少さます。	は、背面のパネルの MOD V 信号を使用して制御され (電圧)は、偏差(最大設定 負(-5V~0)の電圧(信号)は
<u>!</u> 注意	変調周波数とキャリア周波 係を以下に示します。	皮数に対するピーク偏差の ┃
	ピーク偏差 = 変調周波	数 - 搬送波周波数

キャリア周波数はピーク偏差の周波数より大きいか、 または等しくなければいけません。偏差およびキャリア

	波周波数の和は、 数を超えてはいけ 範囲外に偏差が割 容できる最大値に ージが生成されま	設定したキャリア波形の最大周波 ません。上記の条件のいずれかの 定された場合、偏差は自動的に許 設定され" out of range"エラーメッセ す。	
	キャリア波形が方言 クルの周波数境界 には、デューティサ "Settings conflict"	杉波の場合、偏差はデューティサイ を超えることがあります。この場合 ・イクルは許容最大値となり エラーメッセージが生成されます。	
構文	SOURce[1 2 3 3 deviation in Hz>	SOURce[1 2 3 3RF]:FM:DEViation { <peak deviation in Hz> MINimum MAXimum}</peak 	
パラメータ	<peak deviation="" i<="" td=""><td>n Hz> DC to Max Frequency</td></peak>	n Hz> DC to Max Frequency	
例	SOUR1:FM:DEV 周波数偏差を、許	MAX 容最大値に設定します。	
構文	SOURce[1 2 3 3 [MINimum MAXi	RF]:FM:DEViation? mum]	
パラメータ	<nr3></nr3>	周波数偏差を Hz で返します。	
例	SOURce[1 2 3 3RF]:FM:DEViation? MAX		
	+1.0000E+01		
	最大周波数偏差は	t 10Hz です。	

FSK 変調コマンド

FSK 変調の概要

FSK変調波形の設定は、以下の順にコマンドを実行する必要があります。

1.	FSK 変調を有効に	SOURce[1 2 3 3RF]: FSK:STAT ON コマンドで
	します	FSK 変調をオンにします。
2.	キャリアの構成	APPLy コマンドでキャリア波形を選択します。
		あるいは同等の FUNC、FREQ、AMPL、DCOffs
		コマンドで、指定した周波数、振幅とオフセットの
		キャリア波形を作成することができます。
3.	FSK ソースの選択	SOURce[1 2 3 3RF]:FSK:MOD:INP コマンドで
		内部ソースまたは外部ソースを選択します。
4.	FSK ホップ周波数	SOURce[1 2 3 3RF]:FSK:FREQ コマンドでホッ
	の選択	プ周波数を設定します。
5.	FSK レートの設定	内部ソースのときのみ SOURce[1 2 3 3RF]:
		FSK :INT: RATE コマンドで FSK レートを設定し
		ます。

SOURce[1|2|3|3RF]:FSKey:STATe

説明	FSK 変調を設定または無効にします。 デフォルトでは FSK 変調が無効です。 他のパラメータを設定する前に 有効にする必要があります。
 注意	FSK 変調が有効になっていると、バーストまたはスイ ープモードは無効になります。FSK 変調が有効になっ ているときに、同時に他の変調モードは使用できませ ん。他の変調モードは無効になります。
構文	SOURce[1 2 3 3RF]:FSKey:STATe {OFF ON}
例	SOUR1:FSK:STAT ON
	FSK 変調を有効(オン)にします。
構文	SOURce[1 2 3 3RF]:FSKey:STATe?

G≝INSTEK	N	1FG-2000 シリーズ ユーザーマニュアル	
パラメータ	0		
	1	有効 (ON)	
例	SOUR1:FSK:S	TAT?	
	1		
	FSK 変調が動作	中です。	
SOURce[1 2 3	3 3RF]:FSKey:	$\begin{array}{c} & & \\ & & \\ SOURce & \rightarrow \\ \hline & \\ & & \\ \hline & \\ & \\ & \\ & \\ & \\ & \\$	
説明	FSK 変調のソー す。	スを指定します。デフォルトは内部で	
<u> 注意</u>	FSK 変調の外部入力は背面のトリガ入力端子を使用 します。		
構文	SOURce[1 2 3 3RF]:FSKey:SOURce {INTernal EXTernal}		
例	SOUR1:FSK:SOUR INT		
	FSK 変調の信号	を内部にします。	
構文	SOURce[1 2 3 3RF]:FSKey:SOURce?		
パラメータ	INT	内部信号	
	EXT	外部信号	
例	SOUR1:FSK:SO	OUR?	
	FSK 変調の変調	信号は内部です。	
		(Set)	
SOURce[1 2 3	3 3RF]:FSKey:		
説明	FSK ホップ周波 す。	数を設定します。 初期値は、100Hz で	
<u>/</u> 注意	FSK 変調の、変調波形はデューティーサイクル 50% の方形波です。		
1#			

構文	SOURce[1 2 3 3RF]:FSKey:FREQuency
	{ <frequency> MINimum MAXimum}</frequency>

パラメータ	<frequency></frequency>	1 µHz 以上		
例	SOUR1:FSK:F	SOUR1:FSK:FREQ +1.0000E+02		
	FSK ホップ周波	と数を 100Hz に設定します。		
構文	SOURce[1 2 3 [MINimum MA	SOURce[1 2 3 3RF]:FSKey:FREQuency? [MINimum MAXimum]		
パラメータ	<nr3></nr3>	FSK ホップ周波数を応答します。		
例	SOUR1:FSK:F +1.000000000	SOUR1:FSK:FREQ? +1.000000000000E+02		
	FSK ホップは 1	00Hz です。		
SOURce[1	2 3 3RF]:FSKey	(Set) → (Set) (Se		
説明	内部ソースのと	内部ソースのときの FSK レートを設定します。		
<u> 注意</u>	外部ソースの場	外部ソースの場合このコマンドは無視されます。		
構文	SOURce[1 2 3 { <rate hz="" in=""></rate>	SOURce[1 2 3 3RF]:FSKey:INTernal:RATE { <rate hz="" in=""> MINimum MAXimum}</rate>		
パラメータ	<rate hz="" in=""></rate>	2 mHz~100 kHz		
例	SOUR1:FSK:I	NT:RATE MAX		
	最大周波数を F	FSKレートに設定します。		
構文	SOURce[1 2 3 [MINimum MA	SOURce[1 2 3 3RF]:FSKey:INTernal:RATE? [MINimum MAXimum]		
パラメータ	<nr3></nr3>	FSK レートを応答します。		
例	SOUR1:FSK:I	NT:RATE? MAX		
	+1.000000000	E+05		
	FSK レートの最	大は 100kHz です。		

位相変調(PM)コマンド

PM 変調の概要

PM 変調の設定は、以下の順にコマンドを実行します。

1.	PM 変調を	SOURce[1 2 3 3RF]: PM:STATe ON で PM 変調を有
	有効にする	効にします。
2.	キャリアの	APPLy コマンドでキャリア波形を選択します。
	構成	あるいは同等の FUNC、FREQ、AMPL、DCOffs コマン
		ドで、指定した周波数、振幅とオフセットのキャリア波形を
		作成することができます。
3.	ソースの選	SOURce[1 2 3 3RF]:PM:SOUR コマンドでソースを内
	択	部・外部を切り替えます。
4.	内部ソース	SOURce[1 2 3 3RF]:PM:INT:FUNC コマンドで内部ソー
	波形の選	ス波形を、正弦波、方形波、上昇ランプ波、下降ランプ波
	択	から選択できます。
5.	変調周波	内部ソースの場合のみ、
	数の選択	SOURce[1 2 3 3RF]:PM:INT:FREQ コマンドで変調周
		波数を設定します。
6.	偏差の設	SOURce[1 2 3 3RF]:PM:DEV コマンドで位相偏差を設
	定	定します。

SOURce[1|2]:PM:STATe

 $\underbrace{\text{Set}}_{\rightarrow}$

説明	PM 変調を設定または無効にします。デフォルトでは PM 変調が無効です。他のパラメータを設定する前に 有効にする必要があります。
<u>!</u> 注意	PM 変調が有効になっていると、バーストまたはスイー プモードは無効になります。PM 変調が有効になって いるときに、同時に他の変調モードは使用できませ ん。他の変調モードは無効になります。
構文	SOURce[1 2 3 3RF]:PM:STATe {OFF ON}
例	SOUR1:PM:STAT ON
	PM 変調を有効にします。

構文	SOURce[I 2 3 3RF]:PM:STATe?
パラメータ	0	無効 (OFF)
	1	有効 (ON)
例	SOUR1:P	M:STAT?
	1	
	PM 変調が	動作中です
SOURce[1 2	3 3RF]:PM	$(Set) \rightarrow (Query)$
=		
記明 	変調ソース スの初期値	を内部または外部に設定します。変調ソー [は内部です。
<u>!</u> 注意	PM 変調の ます。	外部入力は背面のトリガ入力端子を使用し
構文	SOURce[1 2 3 3RF]:PM:SOURce {INTernal EXTernal}	
例	SOUR1:PM:SOUR INT	
	変調ソース	を内部に設定します。
構文	SOURce[1 2 3 3RF]:PM:SOURce?	
パラメータ	INT	内部
	EXT	外部
例	SOUR1:PM:SOUR?	
	INT	
	変調ソース	は、内部に設定されています。
SOURce[1 2 3	3RF]:PM:IN	Set → ITernal:FUNction →Query
説明	PM 変調波 波、下降ラ 弦波です。	アンファイン 「「「「「」」」 「形を正弦波、方形波、三角波、上昇ランプ ンプ波に設定します。デフォルトの波形は正 PM 変調は内部変調のみです

注意	方形波と三角波はデューティサイクル 50%です。上昇 ランプ波のシンメトリは、100%。下降ランプ波のシンメ トリは、0%です。			
構文	SOURce[1 2 3 3RF]:PM:INTernal:FUNction {SINusoid SQUare TRIangle UPRamp DNRamp}			
例	SOUR1:	PM:INT:FUN S	IN	
	PM 変調》	皮形を正弦波に	設定します。	
構文	SOURce	[1 2 3 3RF]:PN	I:INTernal:F	UNction?
パラメータ	SIN	正弦波	UPRAMP	上昇ランプ波
	SQU	方形波	DNRAMP	下降ランプ波
	TRI	三角波		
例	SOUR1:F	PM:INT:FUNC	?	
	変調波の	波形は正弦波で	্ৰ	
			(Se	et) →
SOURce[1 2 3 3	BRF]:PM:I	NTernal:FREC	Quency —	Query
説明	内部ソースの変調波形の周波数を設定します。デフォ			
	ルトでは 2	20kHz.に設定さ	れています。	
構文	SOURce { <freque< th=""><th>[1 2 3 3RF]:PM ncy> MINimur</th><th>/I:INTernal:F n MAXimum</th><th>REQuency }</th></freque<>	[1 2 3 3RF]:PM ncy> MINimur	/I:INTernal:F n MAXimum	REQuency }
パラメータ	<frequen< td=""><td>cy> 2mHz~ 2</td><td>0kHz</td><td></td></frequen<>	cy> 2mHz~ 2	0kHz	
	MINimum	最小周波	数を設定します	す。
	MAXimur	n 最大周波	数を設定します	す。
例	SOUR1:PM:INT:FREQ MAX			
	変調波形	の周波数を最大	、に設定します	•
構文	SOURce	SOURce[1 2 3 3RF]:PM:INTernal:FREQuency?		
パラメータ	<nr3></nr3>	変調波形	の周波数を応	答します。
例	SOUR1:	PM:INT:FREQ	?	
	+2.00000	00E+04		

最大変調周波数は 20kHz です。

SOURce[1|2|3|3RF]:PM:DEViation

説明	キャリア波形から変調波形の位相偏移を設定します。 デフォルトの位相偏差は 180°です。
<u>^</u> +	位相偏移の外部入力はリアパネルの MOD 入力を使

- ✓!\注意 用します。180°の設定が+5V、-180°の設定が-5Vとなります。
- 構文 SOURce[1|2|3|3RF]:PM:DEViation {< phase> | minimum |maximum}
- パラメータ <percent> 0°~360°
- 例 SOUR1:PM:DEViation +3.0000E+01
 - 偏移に 30°を指定します。
- 構文 SOURce[1|2|3|3RF]:PM:DEViation?
- パラメータ <NR3> 偏移を応答します。

例 SOUR1:PM:DEViation? +3.0000E+01

偏移は30°です。

PSK 変調コマンド

PSK 変調の概要

PSK変調波形の設定は、以下の順にコマンドを実行する必要があります。

1.	PSK 変調を有効に	SOURce[3RF]: PSK:STAT ON コマンドで PSK
	します	変調をオンにします。
2.	キャリアの構成	APPLy コマンドでキャリア波形を選択します。
		あるいは同等の FUNC、FREQ、AMPL、DCOffs
		コマンドで、指定した周波数、振幅とオフセットの
		キャリア波形を作成することができます。
3.	PSKソースの選択	SOURce[3RF]:PSK:MOD:INT コマンドで内部ソ
		ースまたは外部ソースを選択します。

MFG-2000 シリーズ ユーザーマニュアル

4. PSK シフト位相の 選択		SOURce[3RF]:PSK:PHAS コマ を設定します。	ンドでシフト位相
^{5.} PSK レートの影	定	内部ソースのときのみ SOURce RATE コマンドで PSK レートを討	[3RF]:PSK:INT: 没定します。
		(Set)
SOURce[3RF]	:PS	Key:STATe –	Query
説明	PSł PSł 有炃	く変調を設定または無効にします く変調が無効です。他のパラメー かにする必要があります。	。デフォルトでは タを設定する前に
注意	PSH ープ てい ん。	く変調が有効になっていると、バー 『モードは無効になります。PSK 愛 いるときに、同時に他の変調モード 他の変調モードは無効になります	ーストまたはスイ を調が有効になっ は使用できませ 「。
構文	SO	URce[3RF]:PSKey:STATe {Of	F ON}
例	SO	URce3RF:PSK:STAT ON	
	PSł	く変調を有効(オン)にします。	
構文	SO	URce[3RF]:PSKey:STATe?	
パラメータ	0	無効 (OFF)	
	1	有効 (ON)	
例	SO	URce3RF:PSK:STAT?	
	ON		
	PSł	く変調が動作中です。	
SOURce[3RF]	:PS	Key:SOURce –	Set → →Query
説明	変調 スの	周ソースを内部または外部に設定)初期値は内部です。	します。変調ソー
注意	外部変調ソースを選択した場合は、背面のトリガ入力 端子を使用します。		
構文	SOI {INT	URce[1 2 3 3RF]:PSKey:SOUI Fernal EXTernal}	Rce

例	SOUR1:F	SK:SOUR EXT	
	PSK V-2	スを外部ソースに設定し	<i>、</i> ます。
構文	SOURce	[3RF]:PSKey:SOURc	e?
パラメータ	INT	内部	
	EXT	外部	
例	SOURce: INT	3RF:PSK:SOUR?	
	変調ソース	へを内部に設定します。	
SOURce[3RF]	:PSKey:	PHASE	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$
説明	PSK シフト	~位相を設定します。 初	期値は、180°です。
<u>!</u> 注意	PSK 変調 の方形波 ⁻	の、変調波形はデュー [.] です。	ティーサイクル 50%
	SOURce[3RF]:PSKey:PHASE { <phase> MINimum MAXimum}</phase>		
パラメータ	<phase></phase>	0 ∼ 360°.	
例	SOUR1:F	PSK:DEV 180	
	PSKシフト	~位相を 180°に設定しる	ます。
構文	SOURce [MINimur	[3RF]:PSKey:DEViati n MAXimum]	on?
パラメータ	<percent></percent>	> 0∼360°.	
例	SOUR1:F 360°	PSK:DEV? MAX	
	シフト位相	lの最大は 360°です。	
SOURce[3RF]	:PSKey:	INTernal RATE	$\underbrace{\text{Set}}_{\text{Query}}$
説明	内部ソース	へのときの PSK レートを	設定します。
<u>!</u> 注意	外部ソース	スの場合このコマンドは	無視されます。

構文	SOURce[3RF]:PSKey:INTernal:RATE { <rate in<br="">Hz> MINimum MAXimum}</rate>
パラメータ	<rate hz="" in=""> 2 MHz~1MHz</rate>
例	SOURce3RF:PSK:INT:RATE MAX
	PSK レートを最大にします。
構文	SOURce[3RF]:PSKey:INTernal:RATE? [MINimum MAXimum]
パラメータ	<nr3> PSK レートを応答します。</nr3>
例	SOURce3RF:PSK:INT:RATE? MAX
	+1.0000E+06

PSK レートの最大は 1MHz です。

SUM 変調コマンド

SUM 変調概要

SUM 変調波形の作成は、以下の順にコマンドを実行する必要があります。

1. SUM 変更を有効	SOURce[1 2 3]: SUM:STATe ON で SUM 変調 を有効にします
	APPLyコマンドでキャリア波形を選択します。 あるいは同等の FUNC、FREQ、AMPL、DCOffs コマンドで、指定した周波数、振幅とオフセットの
3. 変調ソースの選択	SOURce[1 2 3]:SUM:SOURコマンドで変調ソースを内部または外部にします。
4. 波形の選択	SOURce[1 2 3]: SUM:INT:FUNC コマンドで正 弦波、方形波、上昇ランプ波、下降ランプ波、三 角波から変調波を選択します。
5. 変調周波数を選択 します。	内部ソースの場合のみ SOURce[1 2 3]:SUM: INT:FREQ コマンドで変調周波数を設定します。
6. 振幅を設定します	SOURce[1 2 3]:SUM:AMPLコマンドで変調振幅 を設定します。

		Set →
SOURCE	2J.3011.31ATE	
説明	SUM 変調を設定または無数 SUM 変調が無効です。他の に有効にする必要があります	かにします。デフォルトて ンパラメータを設定するī す。
<u>!</u> 注意	SUM 変調が有効になってし ープモードは無効になります SUM 変調が有効時は、同B できません。他の変調モート	ヽると、バーストまたはス ⁻ 。 寺に他の変調モードは係 [∶] は無効になります。
構文	SOURce[1 2 3]:SUM:STA	Te {OFF ON}
例	SOUR1:SUM:STAT ON	
	SUM 変調を有効(オン)にし	<i>、</i> ます。
構文	SOURce[1 2 3]:SUM:STA	Te?
パラメータ	0	
	1 有効 (ON)	
例	SOUR1:SUM:STAT?	
	1	
	SUM 変調が動作中です。	
		Set
SOURce[1	2 3]:SUM:SOURce	
説明	SUM 変調のソースを内部ま デフォルトの変調ソースは、	たは外部に設定します 内部に設定されていま
<u>!</u> 注意	背面の外部変調入力は± 5 100%の場合、+5V で最大、 ます。	∀ の範囲です。変調度 -5∨ で最小の振幅とな
構文	SOURce[1 2 3]:SUM:SOU EXTernal}	JRce {INTernal
例	SOUR1:SUM:SOUR INT	
	変調波を内部にします。	

構文	SOUR	e[1 2 3]:Sl	JM:SOURce?	
パラメータ	INT	内部		
	EXT	外部		
例	SOUR1	SUM:SOL	JR?	
	INT			
	変調は	内部です。		
				(Set)→
SOURce[1	2 3]:SUM	:INTernal	:FUNction	
説明	変調波 波、下降 弦波にフ	形を、正弦波 锋ランプ波か なっています	皮、方形波、三角 ら設定します。 ⁻ 。	ョ波、上昇ランプ デフォルトでは、正
/! 注意	方形波。 ランプ波 トリは、(方形波と三角波はデューティサイクル 50%です。上昇 ランプ波のシンメトリは、100%。下降ランプ波のシンメ トリは、0%です。		
構文	SOURc {SINus	SOURce[1 2 3]:SUM:INTernal:FUNction {SINusoid SQUare TRIangle UPRamp DNRamp}		
例	SOUR1	SUM:INT:	FUN SIN	
	SUM 変	調波形を正	弦波に設定しま	ミす。
構文	SOUR	e[1 2 3]:Sl	JM:INTernal:F	UNction?
パラメータ	SIN	正弦波	UPRAMP	上昇ランプ波
	SQU	方形波	DNRAMP	下降ランプ波
	TRI	三角波		
例	SOUR1	SUM:INT:	FUNC?	
	SIN			
	変調波	の波形は、፲	E弦波です。	
				Set →
SOURce[1	2 3]:SUM	:INTernal	:FREQuenc	y →Query
説明	内部ソ - 値は 20	ースの変調派 JkHz です。	皮形の周波数を	設定します。初期

GWINSTEK

構文	SOURce[1 2 : { <frequency></frequency>	3]:SUM:INTernal:FREQuency ·[MINimum MAXimum}
パラメータ	<frequency></frequency>	2mHz~ 20 kHz
例	SOUR1:SUM:	INT:FREQ MAX
	変調周波数を聞	最大にします。
構文	SOURce[1 2 3	3]:SUM:INTernal:FREQuency?
パラメータ	<nr3></nr3>	変調周波数を応答します。
例	SOUR1:SUM:	INT:FREQ?
	+2.000000E-	+04
	変調周波数は	20kHz です。
SOURce[1 2	3]:SUM:AMP	$\begin{array}{c} & & \\ & & \\ \text{Litude} & \rightarrow & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
説明	SUM 変調の振	幅をパーセントで設定します。
<u>!</u> 注意	外部変調入力 場合、+5V で最	は± 5V の範囲です。変調度が 100%の 最大、-5V で最小の振幅となります。
構文	SOURce[1 2 3 minimum ma	3]:SUM:AMPL{< percent> aximum}
パラメータ	<percent></percent>	0%~100%
例	SOUR1:SUM:	AMPLitude +3.0000E+01
	変調度を 30%	にします。
構文	SOURce[1 2 3	3]:SUM:AMPLitude?
パラメータ	<nr3></nr3>	
例	SOUR1:SUM:	AMPLitude?
	+3.000E+01	
	SUM 変調の振	幅は 30%です。

パルス幅変調(PWM)コマンド

PWM 変調概要

PWM 変調の設定は、以下の順にコマンドを実行します。

1.	PWM 変調を	SOURce[1]: PWM:STATe ON で PWM 変調を有効
	有効にする	にします。
2.	キャリアの構	APPLy コマンドでキャリア波形を選択します。
	成	あるいは同等の FUNC、FREQ、AMPL、DCOffs コ
		マンドで、指定した周波数、振幅とオフセットのキャリ
		ア波形を作成することができます。
3.	変調ソースの	SOURce[1]:PWM:MOD:INP コマンドで内部ソースま
	選択	たは外部ソースを選択します。
4.	波形の選択	SOURce[1]:PWM:INT:FUNC コマンドで変調波形と
		して正弦波、方形波、上昇ランプ波、下降ランプ波、
		三角波を選択します。内部ソースのみ。
5.	変調周波数の	SOURce[1]:PWM:INT:FREQ コマンドで変調周波数
	設定	を設定します。内部ソースのみ。
6.	デューティを設	SOURce[1]:PWM:DUTY コマンドでデューティを設定
	定します。	します。

SOURce[1|2|3]:PWM:STATe

 $\underbrace{\text{Set}}_{\rightarrow}$

説明	PWM 変調を設定または無効にします。 デフォルトでは PWM 変調が無効です。 他のパラメータを設定する前 に有効にする必要があります。
<u>!</u> 注意	PWM 変調が有効になっていると、バーストまたはスイ ープモードは無効になります。PWM 変調が有効にな っているときに、同時に他の変調モードは使用できま せん。他の変調モードは無効になります。
構文	SOURce[1 2 3]:PWM:STATe {OFF ON}
例	SOUR1:PWM:STAT ON
	PWM 変調を有効にします。
構文	SOURce[1 2 3]:PWM:STATe?

パラメータ	0	無効 (OFF)		
	1	有効 (ON)		
例	SOU	R1:PWM:STAT?		
	ON			
	PWM	変調が動作中です		
			Set)->	
SOURce[1	2 3]:PW	M:SOURce		
説明	変調ン スの褚	変調ソースを内部または外部に設定します。変調ソー スの初期値は内部です。		
<u>!</u> 注意	外部፤ 力端∹	外部変調ソースを選択した場合は、背面の MOD 入 力端子を使用します。		
構文	SOUI EXTe	SOURce[1 2 3]:PWM:SOURce {INTernal EXTernal}		
例	SOU	R1:PWM:SOUR EXT	r	
	PWM	ソースを外部ソースに	こ設定します。	
構文	SOU	Rce[1 2 3]:PWM:SO	URce?	
パラメータ	INT	内部		
	EXT	外部		
例	SOU	R1:PWM:SOUR? IN	т	
	変調い	ノースは内部です。		
			Set	
SOURce[1]	2 3]:PW	M:INTernal:FUN	ction →Query)	

説明	変調波形を正弦波方形波、三角波、上昇ランプ波、下降ランプ波から設定します。デフォルトの変調波形は 正弦波です。
<u>/</u> 注意	方形波と三角波はデューティサイクル 50%です。上昇 ランプ波のシンメトリは、100%。下降ランプ波のシンメ トリは、0%です。

構文	SOURce[1 2 3]:PWM:INTernal:FUNction {SINusoid SQUare TRIangle UPRamp DNRamp}				
例	SOUR1:PWM:INT:FUN SIN				
	PWM 変調の波形を正弦波に設定します。				
構文	SOURce	[1 2 3]:	PWM:	INTernal:Fl	JNction?
戻り値	SIN	正弦波		UPRAMP	上昇ランプ波
	SQU	方形波		DNRAMP	下降ランプ波
	TRI	三角波			
例	SOUR1:	PWM:II	NT:FU	NC?	
	SIN 変調波の	波形は	正弦波	です。	
					Set
SOURce[1 2 3]:PWM:I	NTerr	nal:FF	REQuency	
説明	内部変調 ォルトの暦	波形の 副波数は	場合の t、10H	み周波数を言 z です。	殳定します。 デフ
構文	SOURce[1 2 3]:PWM:INTernal:FREQuency { <frequency> MINimum MAXimum}</frequency>				
パラメータ	<frequen< td=""><td>cy></td><td>2 mHz</td><td>~ 20 kHz</td><td></td></frequen<>	cy>	2 mHz	~ 20 kHz	
例	SOUR1:	PWM:II	NT:FR	EQ MAX	
	変調周波数を最大に設定します。				
構文	SOURce[1 2 3]:PWM:INTernal:FREQuency?				
パラメータ	<nr3> 変調周波数を Hz で返します。</nr3>				
例	SOUR1:PWM:INT:FREQ? MAX				
	+2.0000E	+04			
	変調周波数の最高は 20kHz です。				
SOURce[1]2]3]·PWM·DUTY \rightarrow Ouerv					
	-				
説明	変調のデ	ューティ	を設定	します。初期	値は 50%です

/ 注意	デューティの設定値は周期、立上り時間、立下がり時間、パルス幅に制限をうけます。外部ソースの場合は 背面の±5V MOD INPUT 端子を使用します。正の電 圧の増加で変調が増加します。減少時は変調が減少 します。
構文	SOURce[1 2 3]:PWM:DUTY {< percent> minimum maximum}
パラメータ	<percent> 0%~100%、他の設定により制限有</percent>
例	SOUR1:PWM:DUTY +3.0000E+01 デューティを30%にします。
構文	SOURce[1 2 3]:PWM:DUTY?
パラメータ	<nr3> デューティを応答します。</nr3>
例	SOUR1:PWM:DUTY? + 3.0000E+01 デューティは30%です

スイープコマンド

スイープ動作概要

スイープの実行は	以下の順にコマンド	を実行する必要があります。
----------	-----------	---------------

1.	スイープモード	SOURce[1 2 3 3RF]: SWE:STAT ON コマンドでス
	を有効にする	イープモードをオンにします。
2.	波形と振幅を	APPLy コマンドで波形を選択します。あるいは、
	設定します。	FUNC、FREQ、AMPL、DCOffsコマンドを、指定した
		周波数、振幅、オフセットの波形を作成するために使
		用できます。
3.	スイープ範囲	スタートおよびストップ周波数を設定するか、またはス
	を設定します	パンとセンター周波数を設定することにより、周波数
		範囲を設定します。

	スタート~	SOURce[1 2 3 3RF]:FREQ:STAR コマンドと
	ストップ	SOURce[1 2 3 3RF]:FREQ:STOP コマンドでスター
		ト周波数とストップ周波数をそれぞれ設定します。スイ
		ープアップに設定するにはストップ周波数をスタート周
		波数より高く、スイープダウンに設定するにはストップ
		周波数をスタート周波数より低く設定します。
	スパン	SOURce[1 2 3 3RF:FREQ:CENT コマンドと
		SOURce[1 2 3 3RF]: FREQ:SPAN コマンドでセンタ
		一周波数と周波数スパンを設定します。スイープアッ
		プに設定するにはスパンを正に、スイープダウンに設
		定するには負に設定します。
4.	スイープモード	SOURce[1 2 3 3RF]: SWE:SPAC コマンドでリニア
	の選択	スイープまたはログスイープを設定します。
5.	スイープ時間	SOURce[1 2 3 3RF]:SWE:TIME コマンドでスイープ
	の選択	時間を設定します。
6.	スイープのトリ	SOURce[1 2]:SOUR コマンドでスイープのトリガソー
	ガソースを選	スを内部または外部に設定します。
	択します	
7.	マーカーを指	トリガ出力端子から出力するマーカー出力は
	定します。	SOURce[1 2]:MARK:FREQ で周波数を指定し、
		SOURce[1 2]:MARK ON で出力します。マーカーの
		周波数はスイープのスパンに制限されます。

	Set
SOURce[1 2 3 3RF]:SWEep:STATe	

説明	スイープを設定または無効にします。デフォルトでは無 効になっています。スイープは、他のパラメータを設定 する前に有効にする必要があります。
<u> 注意</u>	スイープ動作は変調やバーストと競合します。チャンネ ルごとに選択が必要です。
構文	SOURce[1 2 3 3RF]:SWEep:STATe {OFF ON}
例	SOUR1:SWE:STAT ON
	Ch1 のスイープを有効にします。
構文	SOURce[1 2 3 3RF]:SWEep:STATe?

リモートインタフェース

パラメータ	0	スイープは ON です。		
	1 2	スイープはオフです。		
例	SOUR1:SW	SOUR1:SWE:STAT?		
	1			
	Ch1 のスイ-	ープはオンです。		
		(Set)		
SOURce[1 2	2 3 3RF]:FRE	EQuency:STARt —(Query)		
説明	スイープの閉 100Hz です。	昇始周波数を設定します。初期値は 。		
<u>!</u> 注意	終了周波数 によります。	の設定値の制限はアップ・ダウンの方向		
構文	SOURce[1 { <frequenc< td=""><td> 2 3 3RF]:FREQuency:STARt ;y> MINimum MAXimum}</td></frequenc<>	2 3 3RF]:FREQuency:STARt ;y> MINimum MAXimum}		
パラメータ	<frequency:< td=""><td>> 1uHz から最高周波数まで</td></frequency:<>	> 1uHz から最高周波数まで		
例	SOUR1:FR	SOUR1:FREQ:STAR +2.0000E+03		
	開始周波数	を 2kHz にします。		
構文	SOURce[1 [MINimum	SOURce[1 2 3 3RF]:FREQuency:STARt? [MINimum MAXimum]		
パラメータ	<nr3></nr3>	開始周波数を応答します。		
例	SOUR1:FR	EQ:STAR?		
	+2.0000000	000000E+03		
	開始周波数は 2kHz です。			
		(Set)		
SOURce[1 2	2 3 3RF]:FRE	EQuency:STOP \rightarrow Query)		
説明	スイープの績 です。	終了周波数を設定します。初期値は 1kHz		
 !	周波数の設定	定値の制限はアップ・ダウンの方向により		

_

構文	SOURce[1 2 3 { <frequency></frequency>	SOURce[1 2 3 4 4RF]:FREQuency:STOP { <frequency> MINimum MAXimum}</frequency>		
パラメータ	<frequency></frequency>			
例	SOUR1:FREQ	:STOP +2.0000E+03		
	終了周波数を2	2kHz にします。		
構文	SOURce[1 2 3 [MINimum M	3 3RF]:FREQuency:STOP? AXimum]		
パラメータ	<nr3></nr3>	終了周波数を応答します。		
例	SOUR1:FREQ	STOP? MAX		
	+2.000000000	0000E+03		
	終了周波数は	2kHz です。		
SOURce[1 2	3 3RF]:FREQ	uency:CENTer \rightarrow Query		
説明	スイープの中心 550Hz です。	スイープの中心周波数を設定します。初期値は 550Hz です。		
<u>!</u> 注意	最高センター周 設定に依存しま	最高センター周波数は、スイープスパンと最高周波数 設定に依存します。		
	最高センター周	波数 = 最高周波数 – スパン/2		
構文	SOURce[1 2 3 { <frequency></frequency>	SOURce[1 2 3 3RF]:FREQuency:CENTer { <frequency> MINimum MAXimum}</frequency>		
パラメータ	<frequency></frequency>	450Hz~ 25MHz		
		450Hz~ 1MHz (Ramp)		
例	SOUR1:FREQ	CENT +2.0000E+03		
	中心周波数を2	2kHz にします。		
構文	SOURce[1 2 3 [MINimum MA	SOURce[1 2 3 3RF]:FREQuency:CENTer? [MINimum MAXimum]		
パラメータ	<nr3></nr3>	中心周波数を応答します。		
例	SOUR1:FREQ	:CENT?		
	+2.00000000000E+03 中心周波数は 2kHz です。			

SOURce[1 2 3	3RF]:FREQu	iency:SPAN	Set → →Query	
説明	スイープの偏移 す。	畐を設定します。衫	刃期値は 900Hz で	
	偏移幅は開始周	波数と終了周波数	女の差になります。	
<u>/!</u> 注意	偏移幅が負の場合は開始周波数が終了周波数より高 くなります。最大スパン周波数は、センター周波数と最 高周波数に関係します。			
	最大周波数スパ 数)	ン= 2x(最高周波教	数 – センター周波	
構文	SOURce[1 2 3 3 { <frequency> M</frequency>	3RF]:FREQuenc /INimum MAXin	sy:SPAN num}	
パラメータ	<frequency></frequency>	1µHz ~25MHz		
		1µHz~ 1MHz (R	amp)	
例	SOUR1:FREQ:	SPAN +2.0000E	+03	
	偏移幅を 2kHz (こします。		
構文	SOURce[1 2 3 3 [MINimum MA	3RF]:FREQuenc Ximum]	sy:SPAN?	
パラメータ	<nr3></nr3>	偏移幅を応答しま	き。	
例	SOUR1:FREQ:	SPAN?		
	+2.000000000	0000000E+03		
	偏移幅は 2kHz ⁻	です。		
			Set	
SOURce[1 2 3	3RF]:SWEep	SPACing		
説明	スイープの種類を 期値は、リニアで	ミリニアまたはログ す。	「に設定します。初	
構文	SOURce[1 2 3 3 {LINear LOGar	3RF]:SWEep:SP ithmic}	PACing	
例	SOUR1:SWE:S	PAC LIN		
	スイープをリニア	にします。		

 構文	SOURce[SOURce[1 2 3 3RF]:SWEep:SPACing?			
パラメータ	LIN	リニアです。			
	LOG	ログです。			
例	SOUR1:S	SOUR1:SWE:SPAC?			
	LIN				
	スイープは	リニアです。			
			(Set)→		
SOURce[1 2	2 3 3RF]:SV	VEep:TIME			
説明	スイープ時 は、1 秒で	スイープ時間を設定します。スイープ時間の初期設定 は、1 秒です。			
<u>!</u> 注意	周波数のサ	周波数の増分・減分は自動で設定されます。			
構文	SOURce[{ <second< td=""><td colspan="4">SOURce[1 2 3 3RF]:SWEep:TIME {<seconds> MINimum MAXimum}</seconds></td></second<>	SOURce[1 2 3 3RF]:SWEep:TIME { <seconds> MINimum MAXimum}</seconds>			
パラメータ	<seconds< td=""><td>> 1 ms ~ 500 s</td><td></td></seconds<>	> 1 ms ~ 500 s			
例	SOUR1:S	SOUR1:SWE:TIME +1.0000E+00			
	スイープ時	間を1秒にします。			
構文	SOURce[MINimum	SOURce[1 2 3 3RF]:SWEep:TIME? { <seconds> MINimum MAXimum}</seconds>			
パラメータ	<nr3></nr3>	スイープ時間を	応答します。		
例	SOUR1:S	SOUR1:SWE:TIME?			
	+1.00000E+00 スイープ時間は 1 秒です。				

SOURce[1 2	3]:SWEep:S0	DURce	$\underbrace{\text{Set}}_{\rightarrow}$
説明	トリガソースをP 値は内部です。	内部、外部、手動カ ,	ら設定します。初期
	内部∶IMM は₁ ます。	インターバルを設定	しー定間隔で出力し
	外部:EXT はト 手動:MAN は= 始します。	リガ入力のパルス キー入力またはトリ	入力で出力します。 リガコマンドで出力開
<u>/</u> 注意	APPLy コマント ます。 波形出力 ます。	「で設定するとトリオ 」中の状態は*OPC	りは内部に設定され ンコマンドで確認でき
構文	SOURce[1 2 3 3RF]: SWEep:SOURce {IMMediatelEXTernal MANual}		
例	SOUR1: SWE	SOUR INT	
	スイープの開始	台を内部にします。	
構文	SOURce[1 2	3 3RF]: SWEep:\$	SOURce?
パラメータ	IMM	内部の周期設定に	こよる開始
	EXT	トリガ入力による開	
	MANual	キーまたはコマン	ドによる開始
例	SOUR1:SWE	SOUR?	
	開始を内部周期	期にする	
		411- Y @	(Set)
OUTPut[1 2]: ⁻	FRIGger:SLC)Pe	
説明	トリガ出力の論 がトリガ点です	理を指定します。ī 。	E論理は立上りエッジ
<u>注意</u>	信号の内容は	-リガソースにより3	変化します。

	トリガソー	ス 説明	
	IMM :	50%デューティの方形波を出力します。	
	EXT:	出力なし	
	MAN:	トリガごとに 1uS 以上のパルスが出力さ	
		れます。	
構文	OUTPut[NEGative	OUTPut[1 2]:TRIGger:SLOPe {POSitive NEGative}	
例	OUTP1:T	RIG:SLOP NEG	
	トリガ出力	を負論理にします。	
構文	OUTPut[1 2]:TRIGger:SLOPe?	
パラメータ	POS	正論理出力	
	NEG	負論理出力	
例	OUTP1:T	RIG:SLOP?	
	NEG		
	トリガ出力	は負論理です。	
		Set →	
OUTPut[1]2	2]:TRIGger		
説明	トリガ出ナ です。	」のオン・オフを切り替えます。初期値はオフ	
構文	OUTPut[OUTPut[1 2]:TRIGger {OFF ON}	
例	OUT OUTP1:TRIG ON		
	Enables	the Trig out signal.	
構文	OUTPut[OUTPut[1 2]:TRIGger?	
パラメータ	0	トリガ出力をオフします	
	1	トリガ出力をオンします。	
例	OUTP1:1	rrig?	
	1		
	トリガ出ナ	」をオンします。	

SOURce[1 2]	:MARKer:FRE	Quency	$\underbrace{\text{Set}}_{\text{Query}}$
説明	マーカー出力が 初期値は 500H マーカーは # 西	内部の場合に周 z です。	波数を設定します。
 注意	マーカーは 月面 マーカーの 周波 周波数の間に 記 エラーとなり、中	のトリカ 田力 端子 数はスイープの 引 定します。 範囲 タ 心周波数が設定	-から田力します。 昇始周波数から終了 トが設定された倍は されます。
構文	SOURce[1 2]:I { <frequency> </frequency>	MARKer:FREQ MINimum MAX	uency imum}
パラメータ	<frequency></frequency>	μHz ~ 25 MHz μHz ~ 1 MHz (F	Ramp)
例	SOUR1:MARK:FREQ +1.0000E+03		
	マーカー出力を	1kHz にします。	
構文	SOURce[1 2RI [MINimum MA	F]:MARKer:FRE \Ximum]	EQuency?
パラメータ	<nr3></nr3>	マーカー周波数を	応答します。
例	SOUR1:MARK +1.0000000000	: FREQ? 0000E+03	
SOURce[1 2]	:MARKer	2 C9 。	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$
説明	マーカー出力を	オン・オフします。	
<u> </u>	MARKer ON	マーカー出力が 一のパルスがト されます。	オンになるとマーカ リガ出力端子に出力
	MARKer OFF	マーカー出力が 力端子は方形派	オフになるとトリガ出 友が出力されます。
構文	SOURce[1 2]:I	MARKer {OFF C	DN}
例	SOUR1:MARK	ON	

	マーナ	マーカー出力を ON します。	
構文	SOU	SOURce[1 2]:MARKer?	
パラメータ	0	マーカー出力をオフします。	
	1	マーカー出力をオンします。	
例	SOU	SOUR1:MARK?	

1

マーカー出力をオンします。

バーストモードコマンド

バーストの概要

バーストモードは、内部トリガ(Nサイクルモード)または背面パネルのトリ ガ入力端子を使用して、外部トリガ(ゲートモード)を使用するように構成 することができます。N サイクルモードを使用すると、トリガ信号が入力さ れるたびに、波形サイクル(バースト)で設定された数を出力します。 バースト出力後、次のバーストを出力する前に次のトリガを待ちます。N サイクルのデフォルトは、バースト・モードです。指定されたサイクル数値 を使用する代わりに、ゲートモードでは、外部トリガを使用して出力のオン /オフをします。トリガ極性(Polarity)の設定が Negative の場合は、トリガ 入力信号が TTL ハイの時、波形が連続して出力(バースト状態)し、トリ ガ入力信号が TTL ローになると、波形は最後波形周期を完了した後、出 力を停止します。出力の電圧レベルは、バースト波形のスタート位相と同 じレベルになり、再度ハイになるまでトリガ信号待ちの状態になります。 トリガ極性(Polarity)が Positive の場合は、TTL ローで出力します。同時 に使用できるバースト・モードは、1つのみです。バーストモードは、トリガ ソース(内部、外部、マニュアル)とバーストソースによって異なります。

フ	アンクション	
N サイクル*	サイクル	位相
使用可	使用可	使用可
使用可	使用可	使用可
使用可	使用可	使用可
	フ N サイクル* 使用可 使用可 使用可	ファンクション Nサイクル* サイクル 使用可 使用可 使用可 使用可 使用可 使用可

^{*}burst count

バースト波形の利用は以下の順にコマンドを実行します。

1. バーストモー	ドを有 SOURce[1 2 3]:BURS:STAT ON コマンドでバ
効にする	ーストモードをオンにします。
2. トリガ/ゲート=	Eード APPLyコマンドで正弦波、方形波、ランプ波、パ
の選択	ルスバースト波形を選択します。あるいは、
	FUNC、FREQ、AMPL、DCOffs コマンドを、指定
	した周波数、振幅、オフセットのバースト波形*を
	作成するために使用できます。*内部トリガバース
	トの最小周波数は、2mHz です。
3. バーストカウン	ントの SOURce[1 2 3]: BURS:MODE コマンドでトリガ
設定	またはゲートバーストモードを選択します。
4. バースト周期	の設 SOURce[1 2 3]:BURS:NCYCコマンドでバース
定	トカウントを設定します。このコマンドは、トリガバ
	ーストモードの時のみ適用されます。
5. バーストの設	定 SOURce[1 2 3]:BURS:INT:PER コマンドは、バ
	ースト周期/サイクルを設定するために使用しま
	す。このコマンドは、トリガバーストモード(内部ト
	リガ)にのみ適用されます。
6. 開始位相	SOURce[1 2 3]:BURS:PHAS コマンドは、バー
	スト開始位相の設定に使用します。
7. トリガの選択	SOURce[1 2 3]:BURS:TRIG:SOUR コマンド
	は、トリガバーストモードの時のみ使用します。
	(Set)
SOURce[1 2	3]:BURSt:STATe
 ₹⇔ RB	バーストモードを設定します 初期値はオフです

構文	SOURce[1 2 3]:BURSt:STATe?
	バーストをオンします
例	SOUR1:BURS:STAT ON
構文	SOURce[1 2 3]:BURSt:STATe {OFF ON}
<u>!</u> 注意	バーストモードはスイープやその他の変調モードと同 時に使用できません。
記明	ハーストモートを設定します。初期値はオノです。

MFG-2000 シリ<u>ーズ ユーザーマニュア</u>ル

パラメータ	0 バーストをオフします。		
	1 バーストをオンします。		
	SOUR1:BURS:STAT?		
	0		
	バーストはオフです。		
	(Set)		
SOURce[1	2 3]:BURSt:MODE →Query		
説明	バーストモードをトリガまたはゲートモードに設定しま す。		
<u>!</u> 注意	バーストカウント、周期、トリガソース、手動トリガのコ マンドは、ゲートバーストモードでは無視されます。		
構文	SOURce[1 2 3]:BURSt:MODE {TRIGgered GATed}		
例	SOUR1:BURS:MODE TRIG		
	トリガモードにします。		
構文	SOURce[1 2 3]:BURSt:MODE?		
パラメータ	TRIGgered トリガモードにします		
	GATed ゲートモードにします		
例	SOUR1:BURS:MODE?		
	TRIG		
	バーストモードはトリガがです。		
SOURce[1	$2 3]:BURSt:NCYCles \longrightarrow Query$		
説明	トリガバーストモードでサイクル数(バーストカウント)を 設定します。サイクルの初期値は、1 です。 バーストカウントは、ゲートモードでは無視されます。		

<u> 注意</u>	トリガソースが内部(immediate)に設定されている場合、バースト周期と波形周波数の積は、バーストカウ ントよりも大きくなければいけません: バースト周期×波形周波数 > バーストカウント バーストカウントが大きすぎる場合、バースト周期は自 動的に増加され、"Settings conflict"エラーが生成され ます。		
	無限バースト の制約があり	、設定が可能な周波数には最高 25MHz ります。	
構文	SOURce[1 INFinity M	2 3]:BURSt:NCYCles{< # cycles> Nimum MAXimum}	
パラメータ	<# cycles>	1~1,000,000 回	
	INFinity	連続波形	
	MINimum	最小設定回数(1)	
	MAXimum	最大設定回数(1,000,000)	
例	SOUR1:BU	RS:NCYCI INF	
	連続を設定し	します。	
構文	SOURce[1 [MINimum	SOURce[1 2 3]:BURSt:NCYCles? [MINimum MAXimum]	
パラメータ	<nr3></nr3>	設定回数を応答します。	
	INF	設定は連続です。	
例	SOUR1:BU	RS:NCYC?	
	+1.000000E	+00	
	回数は1で	す。	
SOURce[1 2	2 3]:BURSt:II	Set → NTernal:PERiod → Query	
説明	バースト周期 リガが内部(み適用されま です。手動ト トモード、バ-	き設定します。バースト周期の設定は、ト Immediate)に設定されている場合にの ます。バースト周期のデフォルトは、10ms リガ中は、外部トリガまたはゲートバース ースト周期の設定は無視されます。	

<u> 注意</u>	バースト周期は 数を出力する(バースト周期 > ns)	は、選択した周波数の のに十分な長さが必う > バーストカウント/(泳)指定したサイクル 要です。 皮形周波数 + 200
	周期が短すぎ とができるよう range"エラーオ	る場合、バーストが運 に自動的に増加させ が生成されます。	植続して出力するこ ⁻ "Data out of
構文	SOURce[1 2 { <seconds> </seconds>	3]:BURSt:INTerna MINimum MAXimu	I:PERiod Im}
パラメータ	<seconds> / MINimum f MAXimum f</seconds>	バースト周期設定[秒 最小バースト周期の 最大バースト周期の] (1ms~500s) 設定 設定
例	SOUR1:BUR	S:INT:PER +1.000	0E+01
	バースト周期を	E 10s に設定します。	
構文	SOURce[1 2 [MINimum M	3]:BURSt:INTerna AXimum]	I:PERiod?
パラメータ	<nr3></nr3>	バースト周期を秒で	返します。
例	SOUR1:BUR +1.000000000 バースト周期に	S:INT:PER? E+01 は、10 秒です。	
SOURce[1 2 3]:BURSt:PH	IASe	$\underbrace{\text{Set}}_{\rightarrow}$
説明 バーストの開始位相を設定します。スターと位相の フォルトは、0°です。開始位相が 0°では、正弦波、 形波とランプ波の出力電圧は、オフセット電圧が 0 の場合に 0V です。		スターと位相のデ では、正弦波、方 セット電圧が 0V	
	ゲートバースト き波形は、連約 相の電圧レベル 決めるために(・モードでは、トリガ信 売して出力(バースト) ルは、バースト間内の 吏用されます。	号が真(ハイ)のと されます。開始位 D信号電圧レベルを
	位相コマンドは	は、パルス波形では使	見用されません。

構文	SOURce[1 2 { <angle> MI</angle>	SOURce[1 2 3]:BURSt:PHASe { <angle> MINimum MAXimum}</angle>		
パラメータ	<angle></angle>	バースト開始位相の設定[°] (-360°~ 360°)		
	MINimum	最小バースト開始位相の設定(-360)		
	MAXimum	最大バースト開始位相の設定(360)		
例	SOUR1:BUF	S:PHAS MAX		
	開始位相を最	大にします。		
構文	SOURce[1 2 MAXimum]	SOURce[1 2 3]:BURSt:PHASe? [MINimum MAXimum]		
パラメータ	<nr3></nr3>	位相を角度で返します。		
例	SOUR1:BUF	RS:PHAS?		
	+3.600E+02	+3.600E+02		
	開始位相は3	開始位相は 360°です。		
		(Set)		
SOURce[1]	2 3]:BURSt:TF	RIGger:SOURce –Query		
説明	バーストモードのトリガを指定します。			
	Immediate	バースト周期の設定によりバースト が開始されます。		
	External	外部入力によりバーストが開始され ます。バーストが終了する前の入力 は無視されます。		
	Manual	キー入力またはコマンドによりバース トが開始されます。		
<u>!</u> 注意	APPLy コマン れます。	APPLy コマンドを使用するとモードが IMM に設定されます。		
	バースト動作	の完了は OPC コマンドで確認できます。		
構文	SOURce[1 2 {IMMediate	SOURce[1 2 3]:BURSt:TRIGger:SOURce {IMMediate EXTernal MANual}		
例	SOUR1:BUF	RS:TRIG:SOUR IMM		
	トリガを IMM	に設定します。		

構文	SOURce[1 2	2 3]:BURSt:TRIGger:SOURce?
パラメータ	IMM	バースト周期で開始されます
	EXT	外部入力で開始されます
	MANual	キー入力・コマンドで開始されます
例	SOUR1:BURS:TRIG:SOUR?	
	バースト周期	で開始されます
SOURce[1 2 3]:BURSt:TI	$\begin{array}{c} & & & \\ & & & \\ \hline \\ RIGger:DELay & \rightarrow & \\ \hline \\ & & & \\ \hline \\ & & & \\ \hline \\ \\ \hline \\ \\ \\ & \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ $
説明	DELay コマン 間(秒単位)を が入力された 初期値は 0 秒	・ドは、バーストが出力される前に遅延時 挿入するために使用します。トリガ信号 後に遅延が開始されます。遅延時間の ♪です。
構文	SOURce[1 2 3]: BURSt:TRIGger:DELay { <seconds> MINimum MAXimum}</seconds>	
パラメータ	<seconds></seconds>	0~85 seconds
例	OUR1:BURS:TRIG:DEL +1.000E+01	
	遅延を 10 秒	にします
構文	SOURce[1 2 3]:BURSt:TRIGger:DELay? [MINimum MAXimum]	
パラメータ	<nrf></nrf>	遅延時間を応答します。
例	SOUR1:BURS:TRIG:DEL ?	
	+1.000E+01	
	遅延は 10 秒	です。
SOURce[1 2 3]:BURSt:TI	$(Set) \rightarrow \\ RIGger:SLOPe \rightarrow (Query)$
説明	背面パネルの バースト信号 上りです。)トリガ入力端子の入力される外部トリガ のトリガエッジを設定します。初期値は立

構文	SOURce[[*] {POSitive	SOURce[1 2 3]:BURSt:TRIGger:SLOPe {POSitive NEGative}		
パラメータ	POSitive	立上り		
	NEGative	立下り		
例	SOUR1:B	URS:TRIG:SLOP NEG		
	立下りを設	定します。		
構文	SOURce[SOURce[1 2 3]:BURSt:TRIGger:SLOPe?		
パラメータ	POS	立上り		
	NEG	立下り		
例	SOUR1:B NEG 立下りです	URS:TRIG:SLOP ?		
SOURce[1	2 3]:BURSt:	$GATE:POLarity \longrightarrow (Query)$		
説明	ゲートモー カに H レ^ ト波形が出	ゲートモードでは本設定が Normal の場合にトリガ入 カに H レベルが入力されると真となり連続してバース ト波形が出力されます。		
構文	SOURce[[*] {NORMal	SOURce[1 2 3]:BURSt:GATE:POLarity {NORMal INVertes}		
パラメータ	NORMal			
	INVertes	負論理		
例 SOUR1:BURS:GATE:POL INV		URS:GATE:POL INV		
	入力を負誦	論理にします。		
構文	SOURce[[*]	SOURce[1 2 3]:BURSt:GATE:POLarity?		
パラメータ	NORM	正論理		
	INV	負論理		
例	SOUR1:B INV	URS:GATE:POL?		
	入力は負調	侖理です。		

SOURce[1 2]:B	URSt:OUTPu	t:TRIGger:SLOPe →Query		
説明	背面パネルのトリガ出力のトリガエッジを指定します。 初期値は立上りです。			
<u>!</u> 注意	トリガ出力はトリガモードとトリガソースに依存します。			
バーストモード	トリガソース			
トリガバースト	Immediate	デューティ 50%の方形波出力		
	External	トリガ出力無し		
	Manual	開始時に 1ms 以上のパルス出力		
ゲートバースト	-	トリガ出力無し		
	SOURce[1 2]:BURSt:OUTPut:TRIGger:SLOPe {POSitive NEGative}			
パラメータ	POSitive	立上り		
	NEGative	立下り		
例	SOUR1:BURS:OUTP:TRIG:SLOP POS			
	スロープに立上りを設定します。			
構文	SOURce[1 2]:BURSt:OUTPut:TRIGger:SLOPe?			
パラメータ	POS	立上り		
	NEG	立下り		
例	SOUR1:BURS:OUTP:TRIG:SLOP?			
	POS			
	スロープはコ	立上りです。		
		(Set)		
OUTPut[1 2]:TRIGger				
説明	トリガ出力の ON/OFF を設定します。			
	初期値はオフです。			
構文	OUTPut[1 2]:TRIGger {OFF ON}			
パラメータ	OFF	トリガ出力をオフします		
---------	-------------	----------------------	--	--
	ON	トリガ出力をオンします。		
例	OUTP1	TRIG ON		
	トリガ出	力をオンします。		
構文	Ουτρι	OUTPut[1 2]:TRIGger?		
パラメータ	0	トリガ出力はオフです。		
	1	トリガ出力はオンです。		
Query 例	OUTP1:TRIG?			
	1			

トリガ出力はオンです。

任意波形(ARB)コマンド

任意波形設定の概要

任意波形モードの実行は、以下の順にコマンドを実行する必要があります。

1.	任意波形の出力	SOURce[1 2 3]:FUNCtion USER のコマンドで現在		
		選択されてい	る任意波形を	出力します。
2.	波形の周波数、	APPLy コマン	ドで波形を選	択します。あるいは、
	振幅、オフセット	FUNC, FREG	Q、AMPL、DO	COffs コマンドを、指定し
	を選択します	た周波数、振	幅、オフセット	の波形を作成するために
		使用します。		
3.	波形データを呼	DATA:DAC =	コマンドで波形	データ(1~16384 ポイン
	出します	ト/波形)を揮ぎ	発性メモリにダ	ウンロードすることができ
		ます。		
		2 進数または	10 進数(±81	91 の範囲)を使用しま
		す。		
4.	波形のレート	波形レートは、	、波形周波数。	ヒポイント数の積です。
		レート = Hz ×	# ポイント	
		範囲	レート:	1µHz ~ 200MHz
			周波数:	1µHz ~ 100MHz
			# ポイント:	1~16384

SOURce[1|2|3]:FUNCtion USER (Set)

説明 SOURce [1 | 2 | 3]: FUNCtion USER コマンドを使用 して、現在メモリで選択されている任意波形を出力しま す。波形は、現在の周波数、振幅、オフセットの設定 で出力されます。

構文 SOURce[1|2|3]:FUNCtion USER

例 SOUR1:FUNC USER

任意波形のモードに切り替えます。

DATA:DAC

(Set)→

説明	SOURce[1 2]:DATA:DAC コマンドは、IEEE-488.2
	バイナリ・ブロック形式またはカンマ区切りを使用してメ
	モリヘ2進数または10進数の整数値を転送します。

注意 整数値(±8192)は 波形の最大値と最小値のピーク振幅に対応しています。5Vpp(オフセット電圧 0V)の波形は、数値の 8192 が最大電圧 2.5V になります。設定した整数値がフル出力範囲より小さい場合は、ピーク振幅は最大電圧より小さくなります。

IEEE-488.2 バイナリブロック形式は、3つの部分から 構成されています。

# 7 2097152	1.	初期化文字 (#)
12 3	2.	バイト数の桁長(ASCII 形式)
12 0	3.	バイト数

IEEE 488.2 は、波形データ(16ビット 整数)を表すた めに2バイトを使用します。 DATA:DAC VOLATILE, <start>, {<binary 構文 block>|<value>, <value>, ... } パラメータ <start> 任意波形のスタートアドレス <binary block> バイナリデータブロック指定 <value> 整数 ±8192 例 DATA: DAC VOLATILE, #216 Binary Data 上記のコマンドは、バイナリブロック形式を使用して8 つのデータ値(16 バイトに格納されている)をアドレス 0から設定します。 DATA:DAC VOLATILE.1000.511.1024.0.-1024.-511 アドレス 1000 から(511, 1024, 0, -1024, -511) の 5

個のデータを設定します。

説明 波形データをコピーします。 構文 SOURce[1]2]3]:ARB:EDIT:COPY [<start>[, <length> [,<paste>]]] パラメータ <start> 開始点: 0~16384 <length> データ長:0 ~ 16384 <paste> コピー先: 0~16384

例 SOUR1:ARB:EDIT:COPY 1000, 256, 1257 アドレス 1000 から 256 個のデータをアドレス 1257 以 後にコピーします。

SOURce[1|2|3]:ARB:EDIT:DELete Set → 説明 波形データをクリア(0 データ)します。

<u>/</u> 注意	波形出力中は	波形出力中はデータの削除ができません。		
構文	SOURce[1 2 <length>]]</length>	SOURce[1 2 3]:ARB:EDIT:DELete [<start>[, <length>]]</length></start>		
パラメータ	<start></start>	開始点: 0~16384		
	<length></length>	個数:0~16384		
例	SOURce1:AF	SOURce1:ARB:EDIT:DEL 1000, 256		
	アドレス 1000 から 256 個のデータを 0 に設定しま す。			

説明	波形データをクリア(0 データ)します。
<u>/</u> 注意	波形出力中はデータの削除ができません。
構文	SOURce[1 2 3]:ARB:EDIT:DELete:ALL
例	SOUR1:ARB:EDIT:DEL:ALL
	波形データを削除します。

SOURce[1|2|3]:ARB:EDIT:POINt Set →

説明	任意ポイントの	任意ポイントの波形データを設定します。		
<u>!</u> 注意	波形出力中は	波形出力中はデータの変更ができません。		
構文	SOURce[1 2 <data>]]</data>	SOURce[1 2 3]:ARB:EDIT:POINt [<address> [, <data>]]</data></address>		
パラメータ	<address></address>	変更点: 0~16384		
	<data></data>	変更データ: ± 8192		
例 SOUR1:ARB:EDIT:POIN 1000, 511		:EDIT:POIN 1000, 511		
	アドレス 1000 のデータヲ 511 に変更します。			

SOURce[1	2 3]:ARB:EDIT:	:LINE Set		
説明	任意のポイント	 任意のポイント間のデータを直線で置き換えます。		
注意	波形出力中は	波形出力中はデータの変更ができません。		
構文	SOURce[1 2 3 [, <data>[,<ad< td=""><td colspan="3">SOURce[1 2 3]:ARB:EDIT:LINE [<address1> [,<data>[,<address2>[,<data2>]]]]</data2></address2></data></address1></td></ad<></data>	SOURce[1 2 3]:ARB:EDIT:LINE [<address1> [,<data>[,<address2>[,<data2>]]]]</data2></address2></data></address1>		
パラメータ	<addrress1></addrress1>	開始アドレス: 0~16384		
	<data1></data1>	開始データ: ±8192		
	<address2></address2>	終了アドレス: 0~16384		
	<data2></data2>	終了データ: ± 8192		
例	SOUR1:ARB:EDIT:LINE 40, 50, 100, 150			
	アドレス 40 から に入れ替えます	アドレス 40 から 100 のデータを 50 から 150 のデータ に入れ替えます。		

説明	特定の個所の	特定の個所の波形データの保護を設定します。		
構文	SOURce[1 2 <length>]</length>	SOURce[1 2 3]:ARB:EDIT:PROTect [<start>[, <length>]</length></start>		
パラメータ	<start></start>	開始点: 0~16384		
	<length></length>	保護する長さ:0 ~ 16384		
例	SOUR1:ARB:EDIT:PROT 40, 50			
	アドレス 40 から 50 個のデータを保護します。			

説明	波形データすべてを保護します。
構文	SOURce[1 2 3]:ARB:EDIT:PROTect:ALL
例	SOUR1:ARB:EDIT:PROT:ALL

_

SOURce[1 2 3]]:ARB:EDIT	:UNProtect	<u>Set</u> →
説明	波形データの保護を全て解除します。		
構文	SOURce[1 2 :	3]:ARB:EDIT:UNF	Protect
例	SOUR1:ARB:	EDIT:UNP	
	波形データの偽	民護を全て解除しま	す。
SOURce[1 2 3]]:ARB:NCY(Cles	Set → →Query
	任意信号の繰	り返し回数を設定し	
構文	SOURce[1 2 3]:ARB:NCYCles {< #cycles> INFinity MINimum MAXimum}		
パラメータ	<# cycles>	回数を指定します:	1~16384
	INFinity	連続出力とします。	
	MINimum	繰返し回数を最小	1にします
	MAXimum	繰返し回数を最大	16384 にします。
例	SOUR1:ARB	NCYC INF	
	繰返しを無限に	こします。	
構文	SOURce[1 2 3]:ARB:NCYCles? [MINimum MAXimum]		
パラメータ	<nr3></nr3>	繰り返し回数	
	INF	連続動作	
例	SOUR1:ARB +1.0000E+02 繰り返し(± 10)	:NCYC? ೧ ಄	
SOURce[1 2 3]:ARB:OUTF	Put:MARKer	Set → →Query)
説明	マーカー出力を リガ出力端子が	を設定します。マーナ からとなります。	コー出力は背面のト

構文	SOURce[1 2 3 [<start>[,<l< th=""><th>3]:ARB:OUTPut:MARKer _ENGth>]]</th></l<></start>	3]:ARB:OUTPut:MARKer _ENGth>]]	
パラメータ	<start></start>	開始アドレス: 0~16384	
	<length></length>	長さ: 0 ~ 16384	
<u>!</u> 注意	開始アドレス+	長さはデータ長を超えないでください。	
例	SOUR1:ARB:OUTP:MARK 1000,1000		
	マーカーの開始アドレスを 1000、長さを 1000 としま す。		
		Set →	
SOURce[1 2 3]:ARB:OUTF	Put Query	
説明	出力ポイントを設定します。		
	SOURce[1 2 3]:ARB:OUTPut [<start>[, <length>]]</length></start>		
パラメータ	<start></start>	開始アドレス: 0~16384	
	<length></length>	長さ: 0 ~ 16384	
<u>!</u> 注意	開始アドレス+	長さはデータ長を超えないでください。	
例	SOUR1:ARB:OUTP 20,200		
	開始アドレス:20	0 から 200 個を出力します。	

COUNTER コマンド

周波数カウンタの制御コマンドです。

COUNTER:STATE

Set)-- Query

説明	カウン	カウンタの動作をオンオフします。		
構文	COU	Nter:STATe {ON OFF}		
パラメータ	1	ON		
	0	OFF		

例	COUNte	er:STATe ON	
	カウンタを	をオンします	
構文	COUNte	er:STATe?	
例	COUNte	er:STATe?	
	1		
	カウンタ	はオンです。	
			(Set)
COUNter:G	ATe		
説明	周波数力	ウンタのゲート時間	を指定します。
構文	COUNte	er:GATe {0.01 0.1	1 10}
パラメータ	0.01	ゲートを 0.01	秒にします
	0.1	ゲートを 0.1 秒	いにします
	1	ゲートを1秒に	こします
	10	ゲートを 10 秒	にします
例	COUNte	er:GATe 1	
	ゲートを	1 秒にします	
構文	COUNte	er:GATe? {max mi	n}
例	COUNter:GATe?		
	+1.000E	+00	
	ゲートは	1 秒です。	
COUNter:V	ALue?		-+(Query)
説明	カウンタの	の値を取得します	
構文	COUNte	r:VALue?	
例	COUNte	er:VALue?	
	+5.00E+	02	
	500Hz 7	ぎす。	

PHASE コマンド

The phase command remotely controls the phase and channel synchronization.

SOURCE[1	2 pulse]:l	PHASe	Instrument Command
説明	Sets th	e phase.	
構文	SOURc { <phase< td=""><td>e[1 2 pulse]:Pl e> <min> <ma< td=""><td>HASe X>}</td></ma<></min></td></phase<>	e[1 2 pulse]:Pl e> <min> <ma< td=""><td>HASe X>}</td></ma<></min>	HASe X>}
パラメータ	phase	-180~180	
	min	Sets the phase	se to the minimum value.
	max	Sets the phase	se to the maxium value.
例	SOURc	e1:PHASe 25	
	Sets the	e phase of chan	nel 1 to 25°.
構文	SOURc	e[1 2 pulse]:Pl	HASe? {MAX MIN}
パラメータ	<nrf></nrf>	Returns t degrees.	he current phase in
例	SOURc	e1:PHASe?	
	+2.500	E+01	
	Returns	the phase of c	hannel 1 as 25°.
SOURce[1 2 e	2 pulse]:F	PHASe:SYNC	Chroniz Instrument Command
説明	Sychror 2.	nizes the phase	of channel 1 and channel
構文	SOURc	e[1 2 pulse]:PH	ASe:SYNChronize
例	SOURc	e1:PHASe:SYN	IChronize
	Synchro	onizes the phas	e of channel 1

Set)

→

COUPLE コマンド

Coupleコマンドは同期操作の設定を行います。

SOURce[1|2]:FREQuency:COUPle:MODE -Query

説明	周波数カッゴ し、選択した ネルの周波 です。	プリングは2チャンネルの機 <u>-</u> チャンネルを基本としてもう ?数を同期変更するものです。	種のみで動作 一方のチャン 初期値はオフ
構文	SOURce[1 Offset Rat	2]:FREQuency:COUPle: io}	MODE {Off
パラメータ	Off	同期はオフです。	
	Offset	同期はオフセットモードです	0
	Ratio	同期はレシオモードです。	
例	SOURce1:	FREQuency:COUPle:MO	DE Offset
	同期はオフ	セットにします。	
構文	SOURce[1 2]:FREQuency:COUPle:MODE?		
例	SOURce1:FREQuency:COUPle:MODE?		
	Off		
	同期はオフ	です。	
SOURce[1 2]:	FREQuen	cy:COUPle:OFFSet	$\underbrace{\text{Set}}_{\text{Query}}$
説明	オフセットモ 初期値は 0	ードの同期のオフセット量を Hz です。SOURce1 を使用	設定します。 して設定すると
	ch2の周波 となります。	数 = CH1 の周波数 + オフ 1	セット量
構文	SOURce[1 {frequency	2]:FREQuency:COUPle: v}	OFFSet

例	SOURce1:FREQuency:COUPle:OFFSet 2khz		
	オフセットを 2kHz にします。		
構文	SOURce[1 2]:FREQuency:COUPle:OFFSet?		
例	SOURce1:FREQuency:COUPle:OFFSet?		
	+2.00000000000E+03		
	オフセットは 2kHz です。		
SOURce[(Set)→ 1 2]:FREQuency:COUPle:RATio →Query)		
説明	レシオモードの同期のレシオ量を設定します。初期値 は 1 倍です。SOURce1 を使用して設定すると ch2 の周波数 = CH1 の周波数 x レシオ量 となります。		
構文	SOURce[1 2]:FREQuency:COUPle:RATio {ratio}		
例	SOURce1:FREQuency:COUPle:RATio 2		
	レシオを2にします。		
構文	SOURce[1 2]:FREQuency:COUPle:RATio?		
例	SOURce1:FREQuency:COUPle:RATio?		
	+1.666000E+00		
	レシオは 1.666 です		
	Set)		
SOURce[1 2]:AMPlitude:COUPle:STATe →Query)		
説明	振幅同期を設定します。初期値はオフです。		
構文	SOURce[1 2]:AMPlitude:COUPle:STATe {ON Off}		
例	SOURce1:AMPlitude:COUPle:STATe on		
説明	振幅同期をオンします。		
構文	SOURce[1 2]:AMPlitude:COUPle:STATe?		

MFG-2000 シリーズ ユーザーマニュアル

パラメータ	1	振幅同期をオンします。	
	0	振幅同期をオフします。	
例	SOURce1:A	MPlitude:COUPle:STATe?	
	1		
	振幅同期はオ	トンです。	
		(Set)	
SOURce[1 2]:	TRACk)
説明	同期の状態を	を通常、反転から選択します。	
	SOURce[1 2]:TRACk {ON OFF INVerted}		
パラメータ ON 通常(非反:		通常(非反転)の同期とします。	
	INVerted	反転の同期とします。	
	OFF	同期をオフします。	
例	SOURce1:T	RACk ON	
	非反転の同期	期を設定します。	
	SOURce[1 2]:TRACk?		
例	SOURce1:TRACk?		
	ON		
	同期は通常(非反転)です。	
	_		
セーフ・リコ	ールコマ	ンド	

最大 10 個までパネル設定を本体の不揮発性メモリへ保存できます。 (メモリ番号:0~9)

*SAV	(Set)→
説明	現在のパネル設定を指定したメモリ番号へ保存しま す。設定が保存されると、全ての設定ファンクションと 波形も保存されます。

<u> 注意</u>	* SAV コマンドは、不揮き を保存し、波形は保存し * RST コマンドは、メモリ 削除することはありません	発性メモリにパネル設定のみ ません。 に保存されている機器設定を ん。		
構文	*SAV {0 1 2 3 4 5 6 7 8	3 9}		
例	*SAV 0			
	メモリ番号0へ機器の状	態を保存します。		
*RCL		(Set)		
説明	メモリ番号 0~9 から事前 を呼び出します。	前に保存してあるパネル設定		
構文	*RCL {0 1 2 3 4 5 6 7 8	3 9}		
例	*RCL 0			
	メモリ番号 0 から設定を	呼び出します。		
MEMory:ST	ATe:DELete	Set)		
説明	指定したメモリ番号の内	容を削除し、初期値とします。		
 構文	MEMory:STATe:DELe	MEMory:STATe:DELete {0 1 2 3 4 5 6 7 8 9}		
例	MEM:STAT:DEL 0			
	メモリ番号0の内容を削	除します。		
MEMory:ST	ATe:DELete ALL	Set		
説明	全てのメモリ番号の内容	を削除し、初期値とします。		
 構文	MEMory:STATe:DELe	ete ALL		

MEM:STAT:DEL ALL

例

全てのメモリ番号の内容を削除し、初期値とします。

エラーメッセージ

本器は特定のエラーコードの複数を持っています。 SYSTem:ERRorコマンドを使用しエラーコードを呼び出します。

コマンドエラー

-101	Invalid character 無効な文字がコマンド文字列で使用されていました。 例: #, \$, %. SOURce1:AM:DEPTh MIN%
-102	構文 error コマンド文字列に無効な構文が使用されていました。 例:予想外の空白文字のように、予期しない文字が発生している 可能性があります。 SOURce1:APPL:SQUare,1
-103	Invalid separator コマンド文字列で無効なセパレータが使用されています。 例:スペース、カンマまたはコロンが誤って使用されています。 APPL:SIN 1 1000 OR SOURce1:APPL:SQUare
-108	パラメータ not allowed コマンドで、余分なパラメータを受け取りました。 例:余分(不要)パラメータがコマンドに追加されています。 SOURce1:APPL? 10
-109	Missing パラメータ コマンドで、パラメータがたりません。 例:必要なパラメータが省略されていました。 SOURce1:APPL:SQUare
-112	Program mnemonic too long コマンド・ヘッダ字が 12 文字です。 OUTP:SYNCHRONIZATION ON
-113	Undefined header 未定義のヘッダが検出されました。ヘッダは構文的には正しいで す。 例:ヘッダーに文字間違いが含まれています。 SOUR1:AMM:DEPT MIN

-123	Exponent too large 数値の指数部が 32,000 を超えています
	SOURce[1 2]:BURSt:NCYCles 1E34000
-124	Too many digits 仮数部が(先頭の0を除く)255 桁以上の数字を含んでいます。
-128	Numeric data not allowed
	コマンドで予想外の数字が受信されました。
	例:文字列の変わりに数値パラメータが使用されています。
	SOURce1:BURSt:MODE 123
-131	Invalid suffix
	無効な接尾文字が使用されました。
	例∶未知または不適切な接尾文字をパラメータと一緒に使用され
	ています。
	SOURce1:SWEep:TIME 0.5 SECS
-138	Suffix not allowed
	無効な位直に接尾文字が使用されています。
	例:無効な接尾文字が使用されています。
4.40	SOURce1:BURSt: NCYCles 12 CYC
-148	Unaracter data not allowed
	コマント内で計りされない位直にハウメーダが使用されています。
	1例: 致値ハファータ このる必要かのる部方に、離散ハファータが使用されています
-158	String data not allowed
-100	
	11週9%は世世にす 刻しない ステリが 反用されています。
	SOURce1:SWEen:SPACing 'TEN'
-161	Invalid block data
	無効なブロックデータを受信しました。
	例:DATA:DAC コマンドで送信されたバイト数が、ブロックヘッダで
	指定されたバイト数と合致していません。
-168	Block data not allowed
	ブロックデータが許可されていない位置にブロックデータを受信し
	ました。
	例:SOURce1:BURSt: NCYCles #10
-170	expression errors
~	例:使用される数式が有効ではありません。
-177	

実行エラー

-211 Trigger ignored

トリガが受信されたが、無視されました。 例:トリガを使用することができる機能(バースト、スイー プなど)が有効になるまでトリガは無視されます。

-223 Too much data

受信データが多すぎます。16384 ポイント以下が有効で す。

-221 Settings conflict; turned off infinite burst to allow immediate trigger source

例:内部トリガソースが選択されているとき、無限バース トは無効です。バーストカウントは、1,000,000 サイクル に設定されます。

-221 Settings conflict; infinite burst changed trigger source to MANual

例:無限バーストモードが選択されると、トリガソースは、 手動から内部に変更されます。

-221 Settings conflict; burst period increased to fit entire burst

例:バーストカウントまたは周波数を可能にするために バースト周期を自動的に長くします。

-221 Settings conflict; burst count reduced

例:バースト期間が最大の場合、バーストカウントは、波 形の周波数が可能になるように減少します。

-221 Settings conflict; trigger delay reduced to fit entire burst

例:現在の周期およびバーストカウントが可能になるよう にトリガ遅延を減少します。

-221 Settings conflict;triggered burst not available for noise

例:ノイズ波形で h あトリガバーストは使用できません。

-221 Settings conflict; amplitude units changed to Vpp due to high-Z load

ハイインピーダンスに設定している場合、dBm 単位を使 用することはできません。単位は、自動的に Vpp に設定 されています。

-221 Settings conflict;trigger output disabled by trigger external

例:外部トリガ入力を使用するとトリガ出力は利用でき ません。

-221 Settings conflict;trigger output connector used by FSK

例:FSK 変調ではトリガ出力は利用できません。

-221 Settings conflict;trigger output connector used by burst gate

例:トリガ出力はトリガバーストが Gate では使用できません。

-221 Settings conflict;trigger output connector used by trigger external

例:外部トリガ入力を使用するとトリガ出力は利用できま せん。

-221 Settings conflict; frequency reduced for pulse function

例:パルス変調に変更した場合に出力が範囲外のとき は出力周波数が変更されます。

-221 Settings conflict; frequency reduced for ramp function

例:ランプ波形に変更して周波数が範囲外の場合は周 波数が変更されます。

-221 Settings conflict; frequency made compatible with burst mode

例:バーストモードに変更して周波数が範囲外の場合は 周波数が変更されます。

-221 Settings conflict; frequency made compatible with FM

例:FM 変調に変更して周波数が範囲外の場合は周波 数が変更されます。

-221 Settings conflict; burst turned off by selection of other mode or modulation

例:スイープまたは変調モードが有効になっている場合、 バーストモードは無効になります。

-221 Settings conflict;FSK turned off by selection of other mode or modulation

例:バースト、スイープ、または変調モードが有効になっている場合、FSKモードは無効になります。

-221 Settings conflict;FM turned off by selection of other mode or modulation

例:バースト、スイープ、または変調モードが有効になっている場合、FMモードは無効になります。

-221 Settings conflict;AM turned off by selection of other mode or modulation

例:バースト、スイープ、または変調モードが有効になっている場合、AMモードは無効になります。

-221 Settings conflict; sweep turned off by selection of other mode or modulation

例:バーストモードまたは変調モードが有効になっている 場合、スイープモードは無効になります。

-221 Settings conflict;not able to modulate this function

例:変調波形は、DC 電圧、ノイズ、またはパルス波形で は生成できません。

-221 Settings conflict;not able to sweep this function

例:掃引波形は、DC 電圧、ノイズ、またはパルス波形で は生成できません。

-221 Settings conflict;not able to burst this function

例: 直流電圧機能ではバースト波形を生成できません。

-221 Settings conflict;not able to modulate noise, modulation turned off

例:ノイズ機能を使用して波形を変調することはできません。

-221 Settings conflict;not able to sweep pulse, sweep turned off

例:パルス機能を使用して波形を掃引することはできま せん。

-221 Settings conflict;not able to modulate dc, modulation turned off

例:DC 電圧機能を使用して波形を変調することはできません。

-221 Settings conflict;not able to sweep dc, modulation turned off

例:DC 電圧機能を使用して波形を掃引することはできません。

-221 Settings conflict;not able to burst dc, burst turned off

例:バースト機能は、DC 電圧機能と一緒に使用すること はできません。

-221 Settings conflict;not able to sweep noise, sweep turned off

例:ノイズ機能を使用して波形を掃引することはできません。

-221 Settings conflict; pulse width decreased due to period

例:周期設定に合わせてパルス幅を調整しました。

-221 Settings conflict; amplitude changed due to function

例:選択した機能に合わせて振幅(VRM / dBm)を調整 しました。MFG-2000の場合、典型的な方形波は、クレ ストファクターにより、正弦波(~3.54)と比較してはるか に高い振幅(5V Vrms)を持ちます。

-221 Settings conflict; offset changed on exit from dc function

例:オフセットレベルは、DC 機能の終了時に調整されます。

-221 Settings conflict;FM deviation cannot exceed carrier

例:偏差をキャリア周波数より高く設定することはできま せん

-221 Settings conflict;FM deviation exceeds max frequency

例:FM 偏差と搬送周波数の合計が最大周波数に100 kHzを加えた値を超えると、偏差は自動的に調整されま す。

-221 Settings conflict; frequency forced duty cycle change

例:周波数が変更され、現在のデューティが新しい周波 数でサポートできない場合、デューティは自動的に調整 されます。

-221 Settings conflict; offset changed due to amplitude

例:オフセットは有効なオフセット値ではありません。振 幅を考慮して自動的に調整されます。

|オフセット|≤最大振幅- Vpp / 2

-221 Settings conflict; amplitude changed due to offset

例:振幅は有効な値ではありません。オフセットを考慮し て自動的に調整されます。

Vpp≤2X(最大振幅-|オフセット|)

-221 Settings conflict; low level changed due to high level

例:低レベル値の設定が高すぎます。低レベルは高レ ベルより1mV低く設定されます。

-221 Settings conflict; high level changed due to low level

例:高レベルの値の設定が低すぎます。高レベルは低 レベルより1mV 大きく設定されます。

-222 Data out of range;value clipped to upper limit

例:パラメータが範囲外に設定されました。パラメータ は、許可されている最大値に自動的に設定されます。

SOURce1: FREQuency 60.1MHz

-222 Data out of range;value clipped to lower limit

例:パラメータが範囲外に設定されました。パラメータ は、許可されている最小値に自動的に設定されます。 SOURce1:FREQuency 0.1µHz.

-222 Data out of range;period; value clipped to ...

例:周期が範囲外の値に設定された場合、自動的に上 限または下限に設定されます。

-222 Data out of range; frequency; value clipped to ...

例:周波数が範囲外の値に設定された場合、自動的に 上限または下限に設定されます。

-222 Data out of range; user frequency; value clipped to upper limit

例:任意波形に設定した場合に周波数が範囲外になる と上限値に設定されます

-222 Data out of range;ramp frequency; value clipped to upper limit

例:ランプに設定した場合に周波数が範囲外になると上 限値に設定されます

-222 Data out of range;pulse frequency; value clipped to upper limit

例:パルスに設定した場合に周波数が範囲外になると上 限値に設定されます

-222 Data out of range; burst period; value clipped to ...

例:バーストに設定した場合にバースト周期が範囲外に なると上限値に設定されます

222 Data out of range; burst count; value clipped to ...

例:バーストに設定した場合にバーストカウントが範囲外 になると上限値に設定されます

-222 Data out of range; burst period limited by length of burst; value clipped to upper limit

例:バースト周期は、バーストカウントを周波数+200ns で割った値よりも大きくする必要があります。バースト周 期は、これらの条件を満たすように調整されます。 バースト周期>200 ns +(バーストカウント/バースト周波 数)。

-222 Data out of range; burst count limited by length of burst; value clipped to lower limit

例:バーストカウントは、バースト周期*トリガーソースが 即時に設定されている場合の波形周波数(SOURce [1 |2|3]:TRIG:SOUR IMM)未満である必要がありま す。バーストカウントは自動的に下限に設定されます。

-222 Data out of range; amplitude; value clipped to ...

例:振幅が範囲外の値に設定された場合、自動的に上 限または下限に設定されます。

-222 Data out of range; offset; value clipped to ...

例:オフセットが範囲外の値に設定された場合、自動的 に上限または下限に設定されます。

-222 Data out of range; frequency in burst mode; value clipped to ...

例:バーストモードで周波数が範囲外の値に設定された 場合。バースト周波数は、バースト期間を考慮して、自 動的に上限または下限に設定されます。

-222 Data out of range; frequency in FM; value clipped to ...

例:搬送周波数は周波数偏差によって制限されます
 (SOURce [1 | 2 | 3 | 3RF]: FM: DEV)。搬送周波数
 は、周波数偏差以下になるように自動的に調整されます。

-222 Data out of range;marker confined to sweep span; value clipped to ...

例:マーカー周波数が開始周波数または停止周波数以 外の値に設定されている。マーカー周波数は、開始周 波数または停止周波数のいずれか(設定値に近い方) に自動的に調整されます。

-222 Data out of range;FM deviation; value clipped to ...

例:周波数偏差が範囲外です。偏差は、周波数に応じ て、上限または下限に自動的に調整されます。

-222 Data out of range;trigger delay; value clipped to upper limit

例:トリガー遅延が範囲外の値に設定されました。トリガ ー遅延が最大(100 秒)に調整されました。

-222 Data out of range; trigger delay limited by length of burst; value clipped to upper limit

例:トリガー遅延とバーストサイクルタイムの合計は、バ ースト期間よりも短くする必要があります。

-222 Data out of range; duty cycle; value clipped to ...

例:デューティサイクルは周波数に応じて制限されます。

Duty Cycle

Frequency

0.01%~99.99%(>20nS) Full range

-222 Data out of range; duty cycle limited by frequency; value clipped to upper limit

例:デューティサイクルは周波数に応じて制限されます。 周波数が 50MHz を超えると、デューティサイクルは自 動的に 50%に制限されます。

-313 Calibration memory lost; memory corruption detected

キャリブレーションデータを格納する不揮発性メモリに障害(チェックサムエラー)が発生したことを示します。

-314 Save/recall memory lost;memory corruption detected

保存/リコールファイルを保存する不揮発性メモリに障害 (チェックサムエラー)が発生したことを示します。

-315 Configuration memory lost;memory corruption detected

構成設定を保存する不揮発性メモリに障害(チェックサ ムエラー)が発生したことを示します。

-350 Queue overflow

エラーキューがいっぱいであることを示します(20を超え るメッセージが生成され、まだ読み取られていません)。 キューが空になるまで、メッセージは保存されません。 キューは、各メッセージを読み取るか、* CLS コマンドを 使用するか、本器を再始動することによってクリアできま す。

-361 Parity error in program message

RS232 パリティ設定の不一致があることを示します。

-362 Framing error in program message

RS232 ストップビット設定の不一致があることを示します。

-363 Input buffer overrun

RS232を介して送信された文字が多すぎることを示します。ハンドシェイクが使用されていることを確認します。

クエリエラー

- -410 Query INTERRUPTED コマンドを受信したが、前のコマンドからの出力バッファ内のデー タは失われたことを示します。
- -420 Query UNTERMINATED ファンクションジェネレータはデータを返す準備ができていが、出 カバッファにデータがありませんでした。たとえば、APPLy コマンド を使用します。
- -430 Query DEADLOCKED
 コマンドは、出力バッファが受信できるよりも多くのデータを生成し、入力バッファがいっぱいであることを示します。すべてのデータ
 は保持されませんが、このコマンドは実行を終了します。

任意波形エラー

- -770 Nonvolatile arb waveform memory corruption detected 任意波形データを格納する不揮発性メモリで障害(チェックサムエ ラー)が発生したことを示します。
 -781 Not enough memory to store new arb waveform; bad sectors
- -781 Not enough memory to store new arb waveform; bad sectors 任意波形データを格納する不揮発性メモリで障害(不良セクタ)が 発生したことを示します。結果として任意波形のデータを格納する のに十分なメモリーがありません。
- -787 Not able to delete the currently selected active arb waveform 例:現在選択されている波形が出力されているため、削除できません。
- 800 Block length must be even Example: ブロックデータ(DATA:DAC VOLATILE)は、各データ ポイントを格納するために2バイトを使用しているので、データブ ロックの偶数またはバイトが存在しなければなりません。

SCPI ステータスレジスタ

ステータスレジスタは、ファンクションジェネレータの状態を記録し、決定 するために使用されます。 ファンクションジェネレータは、複数のレジスタグループを持っています: Questionable ステータスレジスタ Standard イベントステータスレジスタ ステータスバイトレジスタ 同様に出力、エラーキューなど。

各レジスタ群は、コンディションレジスタ、イベントレジスタとイネーブルレジスタの3つのタイプに分かれています。.

レジスタの種類

コンディションレジスタ	コンディションレジスタは、リアルタイムで、ファ ンクション・ジェネレータの状態を示します。コン ディションレジスタは、トリガされません。すなわ ち、コンディションレジスタ内のビットは、機器の 状態をリアルタイムで変更します。コンディショ ンレジスタを読み出しても、クリアされません。コ ンディションレジスタは、クリアまたは設定するこ とはできません。
イベントレジスタ	イベントレジスタは、イベントレジスタがコンディ ションレジスタにトリガされた場合、表示します。 イベントレジスタがラッチされ、*CLSコマンドが 使用されない限り、設定されたままになります。 イベントレジスタは、読取りが完了してもクリアさ れません。
イネーブルレジスタ	イネーブルレジスタは、ステータスイベント(s) が有効になっている状態を決定します。有効に されていないあらゆるステータスイベントは無視 されます。有効なイベントは、そのレジスタグル ープのステータスを要約するために使用されて います。

MFG-2000 ステータスシステム

Questionable ステータスレジスタ

説明	Questionable ステータスレジスタは、エラーが発生した場合に表示されます。				
ビットサマリ	ビット名	説明	ビット	重み	
	Volt Ovld	過電圧	0	1	
	Over Temp	過熱	4	16	
	Loop unlock	アンロック	5	32	
	Ext Mod Ovld	外部変調が過電圧	7	128	
	Cal Error	校正エラー	8	256	
	External Ref	外部リファレンス	9	512	

Standard イベントステータスレジスタ

説明	Standard イベント。 実行されたか、どの かどうかを示します	ステータスレジスタは、・*(りようなプログラミングエラ ⁻ 。	OPC コマ 一が発生	ンドが Eした
$\mathbf{\Lambda}$	Standard イベント	ステータスイネーブルレジ	スタは、*	ESE
∠・▲注意	0コマンドを使用す	るとクリアされます。		
	Standard イベント	ステータスイネーブルレジ	スタは、*	CLS
	コマンドまたは*ES	R?コマンドを使用するとク	リアされ	ます。
ビットサマリ	ビット名	説明	ビット	重み
	Operation Complete	オペレーション完了ビット	0	1
	Query Error	クエリエラー	2	4
	Device Error	デバイスエラー	3	8
	Execution Error	実行エラー	4	16
	Command Error	コマンドエラー	5	32
	Power On	電源オン	7	128
オペレーション	シーオペレーション	ン完了ビットは、選択された	-すべて(の保留
完了	中の操作が完	記了したときセットされます	。このビ	ットは、
	*OPC コマンI	ドに対応して設定されてい	ます。	

クエリエラー	出力キューの読み取り中にエラーがあるときにクエリ
	エフービットかセットされよう。これは、現在ナーダかな
	いときに出力キューを読み取ろうとすることによって発
	生する場合があります。
デバイス	デバイス依存エラーは、セルフテスト、キャリブレーショ
エラー	ン、メモリまたはその他デバイスに依存したエラーを示
	しています。
実行エラー	実行ビットは、実行エラーが発生したことを示します。
コマンドエラー	構文エラーが発生したときにコマンドエラービットがセ
	ットされます。
電源オン	電源がリセットされました。

ステータスバイトレジスタ

説明	スタのステータスイベントを統合します。ステータスバ イ・レジスタは、*STB?クエリ、またはシリアルポールで 読み取ることができ、*CLSコマンドでクリアすることが できます。 ステータスレジスタのいずれかのイベントをクリアする と、ステータスバイトレジスタの対応するビットがクリア されます。 *SRE 0コマンドが使用されると、ステータスバイトイネ			
入 注意	*SRE 0 コマ ーブルレジ *CLS コマン ィションレジ	マンドが使用されると、ステー スタは、クリアされます。 バが使用されると、ステータ スタは、クリアされます。	-タスバイ スバイト	イトイネ コンデ
ビットサマリ	ビット名	説明	ビット	重み
	ERR	エラーキュー	2	4
	QUES	Questionable データ	3	8
	MAV	メッセージ使用可能	4	16
	ESB	Standard イベント	5	32
	RQS	マスタサマリ /	6	64
		リクエストサービス		
エラーキュー	エラーキュ- ます。	-内で待機しているエラーメ	ッセージ	があり
Questionable	"enabled"	Questionable イベントが発生	主したとき	きに
データ	Questional	oleビットが設定されます。		

メッセージ	出力キューに未処理のデータがあるときメッセージ使
使用可能	用可能ビットがセットされます。出力キューにあるすべ
	てのメッセージを読むと、メッセージ使用可能ビットがク
	リアされます。
Standard	Standard イベントステータスイベントレジスタ内の"有
イベント	効"イベントが発生した場合、イベントステータスビット
	がセットされます。
マスタサマリ /	マスタサマリステータスは、*STB?に使用されていま
リクエストサービ	す。*STB?クエリは、MSS ビットを読み込こんでも
ス	MSS はクリアされません。
	シリアル・ポール間にポーリングされたときにリクエスト
	サービスビットはクリアされます。

出力キュー

説明	出力キューは、読まれるまで FIFO バッファ内の出力メッセ
	ージに保存されます。出力キューにデータがある場合は、
	ステータスバイトレジスタ内の MAV ビットが設定されます。

エラーキュー

説明	エラー・キューは、SYSTem:ERRor?コマンドで照会されま
	す。エラーキューには、エラーキュー内になにかのエラーメ
	ッセージがあるときステータスバイトレジスタの"エラーキュ
	ー"ビットを設定します。エラーキューが一杯の場合、最後の
	メッセージは、" Queue overflow"エラーが生成され、追加
	のエラーは保存されません。エラーキューが空の場合は、
	"No error"が返されます。
	エラーメッセージは、ファーストインファーストアウトの順にエ
	ラー・キューに格納されています。エラーメッセージは、255
	文字まで含むことができる文字列です。

付録

以下の仕様は、+18℃~+28℃の温度下で最低 30 分間、電源を投入された場合に適用されます。

定格

	MFG-2	000 series	specific f	unctions		
	CH1	CH2	CH-Pulse	CH-RF	パワー	変調/
	200MS/s	200MS/s	25MHz	200MS/s	アンプ	スイープ/
	ARB 付	ARB 付	パルス	ARB 付		バースト/
						カウンタ
MFG-2110	10MHz		•			
MFG-2120	20MHz		•			
MFG-2120MA	20MHz		•		•	•
MFG-2130M	30MHz		•			•
MFG-2160MF	60MHz		•	160MHz		•
MFG-2160MR	60MHz		•	320MHz		•
MFG-2230M	30MHz	30MHz	•			•
MFG-2260M	60MHz	60MHz	•			•
MFG-2260MFA	60MHz	60MHz	•	160MHz	•	•
MFG-2260MRA	60MHz	60MHz	•	320MHz	•	٠

※:日本未発売の機種も含まれます。

|--|

任意波形	ARB 機能	Built-in	
	サンプルレート	200 MSa/s	
	繰り返しレート	100MHz	
	メモリ長	16k points	
	振幅分解能	14 bits	
	不揮発性メモリ	10 個(16k points)	
	出力ポイント数	2~16384	
	マーカーポイント	2 ~ 16384	
	出力モード	1~1000000回または連	続
周波数特性			
	レンジ	Sine	60MHz(max)
		Square	25MHz(max)
		Triangle, Ramp	1MHz
	分解能	1µHz	
	安定度	±20 ppm	
	エージング	±1 ppm, per 1 year	
	許容差	≤1µHz	

出力特性 ⁽²⁾		
	レンジ	1mVpp to 10 Vpp (into 50Ω) 2mVpp to 20 Vpp (開放時)
	確度	\pm 2% of setting \pm 1 mVpp (at 1 kHz/into 50Ω without DC offset))
	分解能	0.1mV or 4 digits
	直線性	\pm 1% (0.1dB) ≦1MHz ± 3% (0.3dB) ≦50 MHz ± 16% (1.5dB) ≦60MHz ⁽⁶⁾ (sinewave relative to 1 kHz/into 50Ω)
	単位	Vpp, Vrms, dBm
オフセット	範囲	±5 Vpk ac +dc (into 50Ω) ±10Vpk ac +dc (解放時)
波形出力	確度	1% of setting + 5mV+0.5% of amplitude
	インピーダンス	50Ω typical (fixed) >10MΩ (出カオフ時)
	保護機能	短絡時出力オフ
	GND 絶縁	42Vpk max
同期出力		·
	レベル	TTL-compatible into>1kΩ
	インピーダンス	50Ω standard
	GND 絶縁	42Vpk max
正弦波特性 ⁽³⁾		
	高調波ひずみ	-60 dBc DC~200kHz, 振幅>0.1 Vpp -55 dBc 200kHz~1 MHz, 振幅>0.1 Vpp
		-45 dBc 1MHz~10 MHz, 振幅> 0.1Vpp
		–35 dBc 10MHz~30MHz, 振幅> 0.1Vpp
		27 dBc 30MHz~60MHz, 振幅> 0.1Vpp
	全高調波ひずみ	< 0.1% (Ampl>1Vpp)DC~100 kHz
方形波特性		
	Rise/Fall 時間	<15ns
	オーハーシュート	<5%
	アシンメトリ	
	テューティー可変範囲	(周波数設定により制限有り)
	ジッタ	20ppm+500ps ⁽⁴⁾
ランフ波特性		
	し 緑性	< 0.1% of peak output
ペルマン中林主体	シンメトリリ変	0%10100%
ハルヘ波特性	国油粉	1uHz~25MHz
	パルス恒	200pS(国法教設完に上り制限方い)
	デューティー可変範囲	=2010(周波数設定により前限有り) 0 01%~99 99%
	/ ユ / 1 □り 反 靶 凸	(周波数設定により制限有り)

GWINSTEK

	オーバーシュート	<5%		
	ジッタ	20ppm+500ps ⁽⁴⁾		
Pulse Generator				
	振幅	1mVpp to 2.5 Vpp (into 2mVpp to 5 Vpp (開放時	50Ω) ŧ)	
	オフセット	±1 Vpk ac +dc (into 50Ω ±2Vpk ac +dc (開放時)	2)	
	周波数	1uHz~25MHz		
	パルス幅	20nS~999.7ks (周波数設定により制限有	ī り)	
	デューティ	0.01%~99.99% (周波数設定により制限有	1 り)	
	エッジタイム	10nS~20S(1ns resolutio (周波数とパルス幅による	on) •制限有)	
	オーバーシュート	<5%		
RF Generator	ジッタ	100ppm+500ps(4)		
仟意波形	ARB 機能	Built-in		
	サンプルレート	200 MSa/s		
	繰り返しレート	100MHz		
	メモリー長	16k points		
	振幅分解能	14 hits		
	出力ポイント数	2~16384		
	いっ々	20ppm+5ps		
国油粉结松	~ / /	zoppiniono		
/PJ #X #X 19 1	レンジ	Sine-DDS 1uHz~160MHz(MFG- 1uHz~320MHz(MFG- Sine-ARB 1uHz~60MHz	2XXXMF) 2XXXMR)	
		Square	25MHz(max)	
	八份金	I riangle, Ramp	TMHZ	
	· 方 件 能 			
	女 た 皮 エージン だ			
	エーシング			
出力特性 ⁽²⁾	計谷左			
	振幅(into 50Ω)	1mVpp to 2 Vpp (MFG- 1mVpp to 1 Vpp (MFG-	2XXXMF) 2XXXMR)	
	催度	$\pm 2\%$ of setting ± 1 mVpp (at 1 kHz/into 50Ω witho	out DC offset))	
	分解能	1mV or 3 digits		
	直線性	\pm 1% (0.1dB) ≦1MHz \pm 3% (0.3dB) ≦50 MHz \pm 10% (0.9dB) ≦160M \pm 35% (3.5dB) ≦320M (sinewaye relative to 1 k	z IHz IHz (Hz/into 50Ω)	
オフセット		±1 Vpk ac +dc (into 500 ±2Vpk ac +dc (開放時)	2)	

MFG-2000 シリーズ ユーザーマニュアル

波形出力	インピーダンス	50Ω typical (fixed) >10MΩ (出力オフ時)
正弦波特性 ⁽³⁾	高調波ひずみ	-60 dBc DC~200kHz
	正弦波、1Vpp	–55 dBc 200kHz∼1 MHz
	into 50Ω	–45 dBc 1MHz~10 MHz
		-30 dBc 10MHz~320MHz
	全高調波ひずみ	< 0.1% (Ampl>1Vpp), DC~100 kHz
方形波特性		
	Rise/Fall 時間	<15ns
	オーバーシュート	<5%
	アシンメトリ	1% of period +5 ns
	デューティー可変範囲	0.01% to 99.99% (周波数設定により制限有り)
	ジッタ	20ppm+500ps(4)
ランプ波特性		
	直線性	< 0.1% of peak output
	シンメトリ可変	0% to 100%
変調・スイープ		
	変調形式	AM,FM,PM,ASK,FSK,PSK,PWM
	Sweep type	Frequency
	Source	
	★ 田田 田 田	(AM,FM,PM, PWM は内部のみ)
		Sine-DDS:5US~327.68mS(分解能 5US)
PSK		SINE-ARB.2IIIFI2~20KFI2(万胜能IIIIFI2)
TOR	キャリア波形	Sine-DDS
	変調波	50% デューティ方形波
	変調周波数	2mHz ~1 MHz
	位相範囲	0°~360.0°
	Source	Internal / External
ASK		
	キャリア波形	Sine-DDS
	変調波	50% デューティ方形波
	変調周波数	2mHz ∼1 MHz
	振幅範囲	0%~100.0%
	Source	Internal / External
ハリーアンフ	ユーナイン・ピーグン・フ	10//0
	人力インビーダンス	1.25\/nkmax
	入力电圧 動作	T.25VpKilldx 宁雪口
	到1F ゲイン	と电圧 20dB
	リイン 中力電力(PL_20)	20W/Square)
		12.5\/pkmax
	出力電圧	12.5Vpkmax 1 6Amax
	出力電圧 出力電圧 出力電流 Rise/Fall Time	12.5Vpkmax 1.6Amax <2.5uS
	出力電力 出力電圧 出力電流 Rise/Fall Time 帯域	12.5Vpkmax 1.6Amax <2.5uS 5Hz-100KHz
	出力電力 出力電圧 出力電流 Rise/Fall Time 帯域 Overshoot	12.5Vpkmax 1.6Amax <2.5uS 5Hz-100KHz 5%
	出力電力(KL=602) 出力電圧 出力電流 Rise/Fall Time 帯域 Overshoot 全高調波ひずみ	12.5Vpkmax 1.6Amax <2.5uS 5Hz-100KHz 5% < 0.1% (Ampl>1Vpp) 20Hz~20 kHz

1.00. A. F.		
機能		
AM 変調		
	キャリア波形	Sine, Square, Triangle, Ramp, Pulse,
		Arb
	変調波	Sine, Square, Triangle,Upramp, Dnramp
	変調周波数	2mHz~20kHz (内部波形)
		DC ~20kHz (外部入力)
	変調度	0%~120.0%
	交通入力	Internal / External
cM亦钿	叉 耐八刀	Internal / External
FIVI 发詞		Sina Squara Triangla Doma
	キャリア波形	Sine, Square, mangle, Ramp
	変調波	Sine, Square, Triangle, Upramp, Dhramp
	変調周波数	2mHz~20kHz (内部波形)
		DC ~20kHz (外部入力)
	Peak Deviation	DC to max frequency
	変調入力	Internal / External
PM 変調		
	キャリア波形	Sine, Square, Triangle, Ramp
		Sine Square Triangle Upramp Doramp
	<i>交响版</i> 亦 油田 边粉	2ml/a 20kl/a (中部法形)
	炎 詗向/ <u>次</u> 效	
	D	DC ~20KHZ (外部入力)
	Phase deviation	0~360.0
	炎調人刀	Internal / External
SUM 変調		
	キャリア波形	Sine, Square, Triangle, Ramp
	変調波	Sine, Square, Triangle,
		Upramp, Dnramp
	変調周波数	2mHz~20kHz (内部波形)
		DC ~20kHz (外部入力)
	SUM depth	0%~100.0%
	変調入力	Internal / External
PWM 変調		
	キャリア波形	Sine, Square, Triangle, Ramp
		Sine Square Triangle
	又 问加	Upramp, Dnramp
	変調周波数	2mHz~20kHz (内部波形)
		DC~20kHz(从部入力)
	Phase deviation	0%100.0% pulse width
	Thase deviation 赤国入力	Internal / External
┎┍レ/ 亦調	返 酮八 万	Internal / External
FSN 发詞		Cine Course Triangle Deser Bulas
	キャリア波形	Sine, Square, Thangle, Ramp, Pulse
	炎調 波	50% duty cycle square
	変調周波数	2mHz to 1 MHz
	Frequency Range	1µHz to max frequency
	変調入力	Internal / External
スイープ		
	波形	Sine, Square, Triangle, Ramp
	増加方式	Linear, Logarithmic
	増減方向	Sweep up, sweep down

MFG-2000 シリーズ ユーザーマニュアル

	開始終了周波数	1uHz~max frquency
	スイープ時間	1ms~500s
	入力	Internal / External
	開始トリガ	Single, External, Internal.
	マーカー出力	立下りエッジ(標準時)
	Source	Internal / External
バースト		
	波形	Sine, Square, Triangle, Ramp
	周波数	最大 25MHz
	回数	1~1000000 Cycles or intfinite
	Start/ Stop 位相	-360.0°~+360.0°
	内部周波数	1 us~500 s
	ゲート入力	External Trigger
	トリガソース	Single, External, Internal.
トリガディレイ	NCycle, Infinite	0s~100 s
外部トリガ入力	Туре	For FSK, Burst, Sweep
	Input Level	TTL Compatibility
	Slope	Rising or Falling(Selectable)
	Pulse Width	>100ns
	Input Impedance	10kΩ, DC coupled
外部変調入力	0	
	タイプ	FOR AM, FM, PM, SUM, PWM
	電圧範囲	±5V full scale
	インヒータンス	
	周波致	DC to 20kHz
1 11 1911 1	GND 純稼	42 урк тах
トリカ出力	L /	
	ダイノ	For ARB, Burst, Sweep
	レヘル	
	ノアンアウト	24 TTL LOAD
	175-372	5012 Typical
周波数カワンタ	测点体面	
	測正配囲	
	唯度 たんぷ コ 地 広	Time base accuracy±rcount
	タイムヘー人唯度	± 20 pm (23 C ± 5 C)
	取局 プ 件 肥	100nHz(1Hz 时)、0.1Hz(100MHz 时)
	人力インビーダンス	2 Em/rma = 20/rma (EHz to 1 E0 MHz)
	怒皮	30 moves 30 moves
うエレンナリ動作	GND 祂稼	42 Vpk max
Z ナヤノイル則TF	冶	180, 180,
	¹ ¹ ¹ ¹ ² ¹ ² ¹ ¹ ² ¹ ² ¹ ² ¹ ¹ ¹ ² ¹	- 180° ~ 180°
	同期	CH2=CH1
	同期項日	
	四两項口	周辺 気
	Dsolink	100.11日、インビノビー あい
	Doomin	
Save/Recall インタフェース	LAN(MFG-2200) USB	10 グループ IPv4、Socket: 1026,Web:80 仮想 COM
------------------------	----------------------	--
表示		4.3" TFT LCD 480 × 3 (RGB) × 272
一般		
	電源	AC100~240V, 50~60Hz (アンプ無モデル) AC100~120V, AC220~240V, 50~60Hz (アンプ付きモデル)
	消費電力	30W(アンプ無モデル) 80W(アンプ付モデル)
	操作環境	仕様保証温度:18 ~ 28°C 操作温度:0~40°C 相対湿度:≤80%,0~40°C ≤70%,35~40°C 設置カテゴリ: CAT Ⅱ
	高度	2000 m
	汚染度 保存環境	EN 61010 Degree 2, Indoor Use -10~70°C, 湿度: ≤70%
	寸法(W x H x D)	266(W) x 107(H) x 293(D) mm
	質量	約 2.5kg(アンプ無モデル) 約 4kg(アンプ付モデル)
	EMC	EN61326-1
	LVD	EN61010-1
	付属品	GTL-101× 1(MFG-21XX) GTL-101× 2(MFG-22XX) Quick Start Guide ×1 CD (user manual + software) ×1 Power cord×1

(1). 合計 10 個の波形を保存できます。各波形は最大 16k ポイントで構成できます。

(2). 0°C~28°Cレンジ外では 1°C当たり振幅とオフセット仕様の 1/10を加えます。(1-year specification).

(3). DC オフセット:0 の時のみ

(4). RF Generator のジッタ: 20ppm+5ns.

(5).パルスチャンネルのみ

(6) 単出力のみ出力時のみ

EC Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD.

declares that the below mentioned product

MFG-2110, MFG-2120, MFG-2120MA, MFG-2130M, MFG-2230M, MFG-2260M, MFG-2160MF, MFG-2260MFA, MFG-2160MR, MFG-2260MRA

satisfies all the technical relations application to the product within the scope of council:

Directive:2014/30/EU; 2014/35/EU; 2011/65/EU; 2012/19/EU

The above product is in conformity with the following standards or other normative documents:

O EMC

EN 61326-1:	Electrical equipment for measurement, control and
EN 61326-2-1:	laboratory use — EMC requirements (2013)

	· · · · ·
Conducted and Radiated Emissions	Electrical Fast Transients
EN 55011: 2009+A1:2010	IEC 61000-4-4: 2012
Current Harmonic	Surge Immunity
EN 61000-3-2: 2014	EN 61000-4-5: 2006
Voltage Fluctuation	Conducted Susceptibility
EN 61000-3-3: 2013	EN 61000-4-6: 2014
Electrostatic Discharge	Power Frequency Magnetic Field
EN 61000-4-2: 2009	EN 61000-4-8: 2010
Radiated Immunity	Voltage Dips/ Interrupts
EN 61000-4-3: 2006+A1 : 2008+A2:2010	IEC 61000-4-11: 2004

Safety

Low Voltage Equipment Directive 2014/35/EU Safety Requirements EN 61010-1: 2010(Third Edition)

GOOD WILL INSTRUMENT CO., LTD.

No. 7-1, Jhongsing Road, Tucheng Dist., New Taipei City 236, TaiwanTel: +886-2-2268-0389Fax: +866-2-2268-0639Web: www.gwinstek.comEmail: marketing@goodwill.com.tw

GOOD WILL INSTRUMENT (SUZHOU) CO., LTD.

No. 521, Zhujiang Road, Snd, Suzhou Jiangsu 215011, ChinaTel: +86-512-6661-7177Fax: +86-512-6661-7277Web: www.instek.com.cnEmail: marketing@instek.com.cn

GOOD WILL INSTRUMENT EURO B.V.

De Run 5427A, 5504DG Veldhoven, The Netherlands Tel: +31(0)40-2557790 Fax: +31(0)40-2541194 Email: <u>sales@gw-instek.eu</u>

任意波形テンプレート

Common		
Absatan	y= atan(x) The absolute of atan(x)	
Abssin	y= sin(x) The absolute of sin(x)	$\square \square \square$
Abssinehalf	y=sin(x),0 <x<pi y=0,pi<x<2pi Half_wave function</x<2pi </x<pi 	\bigwedge
Ampalt	y=e(x).sin(x) Oscillation rise	
Attalt	y=e(-x).sin(x) Oscillation down	MMM
Diric	Even f(x)=-1^(x*(n-1)/2*pi) x=0,±2*pi,±4*pi,	\mathcal{M}
Diric	Odd f(x)=sin(nx/2)/n*sin(x/2) x=±pi,±3pi,	\bigwedge
Gauspuls	f(x)=a*e^(-(x-b)^2)/c^2) Gaussian-modulated sinusoidal pulse	

Havercosin	y=(1-sin(x))/2	\square
е	Havercosine function	
Haversin	y=(1-cos(x))/2 Haversine function	
		/
N_pulse	Negative pulse	
Negramp	y=-x	
	Line segment	
Poetpuls	Sampled aperiodic rectangle	1
Recipuis	Sampled apenduic rectangle	
Roundhalf	y=sqrt(1-x^2)	
		()
Sawtoot	Sawtooth or triangle wave	/
Sinetra	Piecewise function	/
Sinever	Piecewise sine function	<u> </u>

Stair_down	Step down	
Stair_ud	Step up and step down	
Stair_up	Step up	
Stepresp	Heaviside step function	
Trapezia	Piecewise function	
Tripuls	Sampled aperiodic triangle	

Math		
Arccos	Arc cosine	
Arccot	Arc cotangent	

Arccsc	Arc cosecant	
Arcsec	Arc secant	
Arcsin	Arc sine	
Arcsinh	Hyperbolic arc sine	
Arctan	Arc tangent	
Arctanh	Hyperbolic arc tangent	
Cosh	Hyperbolic cosine	
Cot	Cotangent	
Csc	Cosecant	

Diorentz	The derivative of the lorentz function y=- 2x/(k*x^2+1)	
Exp Fall	Exponential fall	
Exp Rise	Exponential rise	
Gauss	A waveform representing a gaussian bell curve	
Ln	Logarithm function	
Lorentz	Lorentz function y=1/(k*x^2+1)	
Sec	Secant	
Sech	Hyperbolic secant	
Sinec	y=sin(x)/x	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Sinh	Hyperbolic sine	
Sqrt	y=sqrt(x)	
Tan	Tangent	
Tanh	Hyperbolic tangent	
Xsquare	Parabola	

Window		
Barthannwin	Modified Bartlett-Hann window	
Bartlett	The Bartlett window is very similar to a triangular window as returned by the triang function.	
Blackman	The Blackman window function	

Bohmanwin	The Bohman window function	
Chebywin	The Chebyshev window function	
Flattopwin	The Flattopwin window function	
Hamming	The Hamming window function	
Hann	The Hann window function	
Hanning	The Hanning window function	
Kaiser	The Kaiser window function	
Triang	The Triang window function	
Tukeywin	The Tukey window function	

Engineer		
Airy	The airy function	
Bessel	The Bessel function	
Beta	The beta function	
Gamm	The gamma function	
Legendre	Associated Legendre function	
Neumann	The Neumann function	

Medical		
Cardiac	Cardiac signal	

EOG	Electro-oculogram	www.fm.f.
EEG	Electroencephalogram	helpharticities and all allowers
EMG	Electromyogram	
Pleth	Pulsilogram	
Resp	Speed curve of the respiration	
ECG1	Electrocardiogram 1	and the second sec
ECG2	Electrocardiogram 2	we want have a second
ECG3	Electrocardiogram 3	man have have
ECG4	Electrocardiogram 4	man and the second

GWINSTEK

ECG5	Electrocardiogram 5	
		man have the
ECG6	Electrocardiogram 6	
ECG7	Electrocardiogram 7	
ECG8	Electrocardiogram 8	
ECG9	Electrocardiogram 9	
ECG10	Electrocardiogram 10	
ECG11	Electrocardiogram 11	
ECG12	Electrocardiogram 12	- Maria
ECG13	Electrocardiogram 13	

ECG14	Electrocardiogram 14	man and the second s
ECG15	Electrocardiogram 15	
LFpulse	Waveform of the low frequency pulse electrotherapy	
Tens1	Waveform 1 of the nerve stimulation electrotherapy	
Tens2	Waveform 2 of the nerve stimulation electrotherapy	
Tens3	Waveform 3 of the nerve stimulation electrotherapy	

AutoElec		
Ignition	Ignition waveform of the automotive motor	h
ISO16750- 2 SP	Automotive starting profile with ringing	

MFG-2000 シリーズ ユーザーマニュアル

ISO16750- 2 VR	Automotive supply voltage profile for resetting	
ISO7637-2 TP1	Automotive transients arising from disconnection	
ISO7637-2 TP2A	Automotive transients arising from inductance in wiring	
ISO7637-2 TP2B	Automotive transients arising from the ignition switching off	
ISO7637-2 TP3A	Automotive transients arising from switching	
ISO7637-2 TP3B	Automotive transients arising from switching	
ISO7637-2 TP4	Automotive working profile during start-up	
ISO7637-2 TP5A	Automotive transients arising from cut-off of battery power	
ISO7637-2 TP5B	Automotive transients arising from cut-off of battery power	

お問い合わせ 製品についてのご質問等につきましては、下記まで お問い合わせください。

株式会社テクシオ・テクノロジー

本社:〒222-0033 横浜市港北区新横浜 2-18-13

藤和不動産新横浜ビル 7F

[HOME PAGE]:https://www.texio.co.jp

E-Mail: info@texio.co.jp

アフターサービスに関しては、下記サービスセンターへ サービスセンター:

〒222-0033 横浜市港北区新横浜 2-18-13

藤和不動産新横浜ビル 8F

TEL. 045-620-2786 FAX.045-534-7183