Test and Measurement Solutions

TEXIO

INTRODUCTION

The products described in the TEXIO General Catalog are listed in a separate selection guide, which classify the products according to the instrument types and groups, and shows the features and specifications of each. Please use this catalog as a guide when ordering.

- All of the products listed in this catalog may not be marketed in your local area or country. Please check with your TEXIO distributor or send an inquiry to us through our web-site, http://www.texio.co.jp .
- Readers are able to learn about new products released after the publication of this catalog through your TEXIO distributor or dealer. We are able to also provide you with new product information on our web-site.
- The design and specifications of the products listed in this catalog are subject to change without prior notice. In addition, please note that some of the products may be discontinued without prior notice.
- For product prices and available services, please contact your local TEXIO dealer.
* In producing this catalog we have made maximum efforts to provide as correct information as possible. However, should you find any misprints or errors, please let us know.

TEXIO...

Providing Industry with the Most Valuable Measurement Technology.

Nowadays, new products featuring high-tech advances appear in dizzying succession. As we head toward a new age in technology, advances in electronics-oriented leading-edge fields in particular continue to accelerate. Supporting this new wave of the technical revolution from the bottom up is electronic measurement technology. TEXIO's initial technological and industrial triumphs were in the field of general purpose measurement equipments for audio manufacturers. Following those first successes, TEXIO went on to develop multiple-output Regulated DC Power Supplies for electric engineers in rapid succession. Those developments led in turn to develop various Regulated DC Power Supplies and Test and Measuring Instruments. In a constant pursuit of better performance and quality for its products, which are the pride of those ages, TEXIO has made continuous and solid progress in the area of measurement technology. Indeed, we could say that TEXIO's advances in product development technology resulted from the evolution of measurement technology. Electronic measurement technology of this sort has consistently supported and equipment made their way to the market as TEXIO moved forward. That is the main reason why TEXIO has continued to lead the market in these leading-edge fields. Never content to rest on its laurels, TEXIO draws on its hi-tech achievements to introduce technology using advanced technology, all the while working steadily to open up new fields of endeavor. "Technological evolution and the technology to support it"The geometric effect accruing from this combination has become the foundation for TEXIO's outstanding creativity and far-sightedness.
TEXIO considers "superior precision and superior quality" as essential to ongoing progress. Relying on a foundation of precision measurement technology, outstanding technical know-how and quick response to developments in leading-edge technology, TEXIO continues to make major contributions in many fields toward technical advances, superior reliability and rationalization by providing the "mother tools" of industry. Proud of its achievements, TEXIO will redouble its efforts to remain a trailblazer in the field of leading-edge electronic technology.

Corporate Profile

Company name	TEXIOTECHNOLOGY CORPORATION
Founded	October 2012
Capital	J. Yen 90 million
President	Tsung-Huei Teng (Mr.)
Holding company	GOOD WILL INSTRUMENT CO., LTD.
Business categories	Test and Measuring Instruments and DC Power Supplies design, development, manufacturing and distribution
Products	Regulated DC Power Supplies, Electronic Loads, Oscilloscopes, Electronic measurement devices and others
Employees	44 (as of April 2020)
Transaction bank	Sumitomo Mitsui Banking Corporation MUFGBank, Ltd.
Headquarters	7F Towa Fudosan Shin Yokohama Bldg., 2-18-13 Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033 Japan TEL +81(0)45-620-2305 FAX +81(0)45-534-7181
URL	https//www.texio.co.jp/
Japan Domestic offices	KITA - NIHON Sales Office (Omiya) HIGASHI - NIHON Sales Office (Yokohama) NAKA - NIHON Sales Office (Nagoya) NISHI - NIHON Sales Office (Osaka)

History

$1954 \quad$ Produced 1st measurement device SG-1/RS-1 (Kasuga Musen)
1965 Developed 1st oscilloscope CO-130 (TRIO)
1973 Developed regulated DC power supply PR-601/PR602 (TRIO)
$1988 \quad$ Developed digital storage oscilloscope CS-8010 (Kenwood)
1989 Developed multiple-output regulated DC power supply PW series (Kenwood)
1992 Developed switching power supply PS series (Kenwood)
$1996 \quad$ Established Kenwood TMI Corporation.
1999 Developed Electronic load device PEL-201 series (Kenwood)
2002 Nikke group acquires 100\% of shares, became part of Nikke Group
2006 Developed flexible range regulated DC power supply PSF-L series (Kenwood)
Changed name to Texio Corportion.
2009 Nikke regrouped subsidiary companies and establised Nikke Techno System Co., Ltd. TEXIO was incorporated into the company as TEXIO division.
2012 Developed Electronic load LSA series (TEXIO)
GOOD WILL INSTRUMENT CO., LTD took over TEXIO division of Nikke Techno System and established TEXIO TECHNOLOGY CORPORATION.
Developed hybrid method regulated DC power supply PDS-A series. (TEXIO)
2014 TEXIO TECHNOLOGY CORPORATION merged with INSTEK JAPAN CORPORATION on January.
2015 Developed Digital Storage Oscilloscope DCS-2000E Series. (TEXIO)
Developed Programmable AC power source APS-7000 Series.(GW)
2016 Developed Arbitray function generator AFG-303x Series.(GW)
2017 Developed Power meter GPM-8213.(GW)
2018 Developed Digital Storage Oscilloscope MDO-2000E Series.(GW)
Developed Multi-Range D.C. Power Supply PFR-100 Series.(TEXIO)
2019 Developed Digital Multimeter GDM-906x Series.(GW)
Developed High voltage Electronic Load LSG-H Series.(TEXIO)
Developed multiple-output regulated DC power supply GPP series(GW)

Multi-Range DC Power Supplies

PSW-360L30
PSW-720L30
PSW-1080L30
PSW-360L80
PSW-720L80
PSW-1080L80
PSW-360M 160
PSW-720M 160
PSW-1080M160
PSW-360M250
PSW-720M250
PSW-1080M250
PSW-360H800
PSW-720H800
PSW-1080H800
(360W 30V/12A-10V/36A) (720W 30V/24A-10V/72A) (1080W 30V/36A-10V/108A) (360W 80V/4.5A-26.6V/13.5A) (720W 80V/9A-26.6V/27A) (1080W 80V/13.5A-26.6V/40.5A) (360W 160V/2.25A-50V/7.2A) (720W 160V/4.5A-50V/14.4A) (1080W 160V/6.75A-50V/21.6A) (360W $250 \mathrm{~V} / 1.44 \mathrm{~A}-80 \mathrm{~V} / 4.5 \mathrm{~A})$ (720W 250V/2.88A-80V/9A) (1080W 250V/4.32A-80V/13.5A) (360W $800 \mathrm{~V} / 0.45 \mathrm{~A}-250 \mathrm{~V} / 1.44 \mathrm{~A})$ (720W 800V/0.9A-250V/2.88A) (1080W $800 \mathrm{~V} / 1.35 \mathrm{~A}-250 \mathrm{~V} / 4.32 \mathrm{~A}$)

PSW Series

Switching

LabVIEW C

Multi-Range Operation

PSW 800V Series Operating Area

Specifications

Model	Output Rating		Ripple		Line regulation		Load regulation		Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	Max. dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	Power consumption VA(approx.)		Weight kg (approx.)
	Power	Voltage/Current	CV	CC	CV	CC	CV	CC					
			mVrms	mArms	mV	mA	mV	mA					
PSW-360L30	360W	0-30V/0-36A	7	72	18	41	20	41	$71 \times 124 \times 350$	$71 \times 137 \times 400$		500 VA	3
PSW-720L30	720W	$0-30 \mathrm{~V} / 0-72 \mathrm{~A}$	11	144	18	77	20	77	$142 \times 124 \times 350$	$142 \times 137 \times 400$		1000VA	5
PSW-1080L30	1080W	0-30V/0-108A	14	216	18	113	20	113	$214 \times 124 \times 350$	$214 \times 137 \times 400$		1500VA	7
PSW-360L80	360W	0-80V/0-13.5A	7	27	43	18.5	45	18.5	$71 \times 124 \times 350$	$71 \times 137 \times 400$		500 VA	3
PSW-720L80	720W	0-80V/0-27A	11	54	43	32	45	32	$142 \times 124 \times 350$	$142 \times 137 \times 400$		1000VA	5
PSW-1080L80	1080W	0-80V/0-40.5A	14	81	43	45.5	45	45.5	$214 \times 124 \times 350$	$214 \times 137 \times 400$		1500 VA	7
PSW-360M160	360W	0-160V/0-7.2A	7	15	83	12.2	85	12.2	$71 \times 124 \times 350$	$71 \times 137 \times 400$		500 VA	3
PSW-720M160	720W	0-160V/0-14.4A	15	30	83	19.4	85	19.4	$142 \times 124 \times 350$	$142 \times 137 \times 400$		1000 VA	5
PSW-1080M160	1080W	0-160V/0-21.6A	20	45	83	26.6	85	26.6	$214 \times 124 \times 350$	$214 \times 137 \times 400$		1500 VA	7
PSW-360M250	360W	0-250V/0-4.5A	15	10	128	9.5	130	9.5	$71 \times 124 \times 350$	$71 \times 137 \times 400$		500 VA	3
PSW-720M250	720W	0-250V/0-9A	15	20	128	14	130	14	$142 \times 124 \times 350$	$142 \times 137 \times 400$		1000VA	5
PSW-1080M250	1080W	0-250V/0-13.5A	15	30	128	18.5	130	18.5	$214 \times 124 \times 350$	$214 \times 137 \times 400$		1500 VA	7
PSW-360H800	360W	0-800V/0-1.44A	30	5	403	6.44	405	6.44	$71 \times 124 \times 350$	$71 \times 137 \times 400$		500VA	3
PSW-720H800	720W	0-800V/0-2.88A	30	10	403	7.88	405	7.88	$142 \times 124 \times 350$	$142 \times 137 \times 400$		1000 VA	5
PSW-1080H800	1080W	0-800V/0-4.32A	30	15	403	9.32	405	9.32	$214 \times 124 \times 350$	$214 \times 137 \times 400$		1500VA	7
	Options												
				GUR-001	RS-232C Interface			PSW-006	Connection cable for PSW in parallel connection (2unit)			Extention Output ${ }^{\text {T }}$	al (Under 160V)
				GUG-001	GP-IB Interface			PSW-007	Connection cable for PSW in parallel connection (3unit)			Extention Output	al (Over 250V)
				PSW-001	Connector kit for PSW Series analog control			GTL-123	Test lead (Max.40A)	GRA		Rack Mount Kit (JIS)	
				PSW-005	Connection cable for PSW in series connection			GTL-130	Test lead for PSW 250V/800V		0-E	Rack Mount Kit (EIA	

Fanless Multi-Range DC Power Supplies

PFR-100L50
PFR-100L50G*
PFR-100M250
PFR-100M250G*
*G Type: With GP-IB/LAN interface

PFR Series

Multi-Range Operation

Test mode Function
The test mode is a function to automatically update voltage and current settings according to the time. The setting creates a CSV file on the PC and loads it into PFR using the USB flash drive, so it can use it without difficult operation..

Specifications

Model	Rating Power	Output	Ripple		Line regulation		Load regulation		Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	Max. dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	Power consumption WIVA(approx:	Weight kg (approx.)
		(Voltage Current)	CV	CC	CV	CC	CV	CC				
			mVims	mArms	mV	mA	mV	mA				
PFR-100L50	100W	0V-50V, 0A-10A	4	10	8	8	10	10	$71 \times 124 \times 301$	$71 \times 143 \times 320$	150VA	2.5
PFR-100M250	100W	0V-250V, 0A-2A	15	2	30	1.2	33	3.2	$71 \times 124 \times 301$	$71 \times 143 \times 320$	150VA	2.5

PSF-400H (800V/3A/400W)
 PSF-800H (800V/6A/800W)

- Main Applications

High-voltage capacitors or relays used for hybrid cars, electric cars, solar power system and high-voltage LED lighting equipment.

- 6 times of flexible output range

PSF-800H covers output for several units of conventional type regulated power supplies within 800 W (max voltage 800 V , max current 6A.).

- Constant Power Control

CP mode is available in addition to CV and CC modes.

- Changeable setting style

Vertical or horizontal setting by 90° rotating panel.

- Sequence Operation

Stand-alone sequence is available with the insidememory programmed by PC, through the optional control board (IF-60GP, IF-60RU).

- Master-slave parallel operation

Possible to increase the output current by master-slave parallel connection of the same model (up to 2 units).

- Various functions are available

Output OFF timer, 3-point preset memory, Remote sensing, External analog control, OVP/OCP/OHP protections

PSF-H Series

90° Rotating Panel

Specifications

Model	Rating Power	Output	Ripple		Line regulation		Load regulation		Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	Max. dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	Power consumption WVAA(approx:	Weight kg (approx.)
		(Voltage, Curent)	CV	CC	CV	CC	CV	CC				
			mVrms	mArms	mV	mA	mV	mA				
PSF-400H	400W	0V-800V, 0A-3A	20	15	100	11.5	110	16.5	$210 \times 124 \times 290$	$229 \times 143 \times 304$	560VA	5
PSF-800H	800W	0V-800V, 0A-6A	25	20	100	13	110	18	$210 \times 124 \times 290$	$229 \times 143 \times 304$	1120VA	6

Options

IF-60GP	GP-IB control board
IF-60RU	RS-232C/USB control board
OP-22P	Parallel connection cable
JK-10	Joint kit
HK-10	Handle kit

GP-IB control board IF-60GP

RS-232C/USB control board
IF-60RU

PSF series combination lineup list

	Model name	Specifications			Necessary items								
		V	A	w	PSF-400L	PSF-800L	PSF-800LS	PSF-400H	PSF-800H	OP-21AB	OP-22P	OP-22S	JK-10
Single use	PSF-400L	80	40	400	1								
	PSF-800L	80	80	800		1							
	PSF-400H	800	3	400				1					
	PSF-800H	800	6	800					1				
Parallel operation	PSF-1200L	80	120	1200	1		1			1			
	PSF-1600L	80	160	1600		1	1			1			
	(2000W)	80	200	2000	1		2				2		2
	(2400W)	80	240	2400		1	2				2		2
	(2800W)	80	280	2800	1		3				3		3
	(3200W)	80	320	3200		1	3				3		3
	(800W)	800	6	800				2			1		1
	(1600W)	800	12	1600					2		1		1
Series operation	(800W)	160	40	800	2							1	1
	(1600W)	160	80	1600		2						1	1

[^0]
Flexible range

Regulated DC Power Supplies

PSF-400L (80V/40A/400W)
PSF-800L (80V/80A/800W)
PSF-400L2 (80V/40A/400W x 2)
PSF-800LS (80V/80A/800W) (Slave Model)
PSF-1200L (80V/120A/1200W)
PSF-1600L (80V/160A/1600W)

- Flexible output range

Possible to output voltage and current flexibly within the rating power. In case of PSF- $800 \mathrm{~L}, 10 \mathrm{~V} / 80 \mathrm{~A}$ to $80 \mathrm{~V} / 10 \mathrm{~A}, 20 \mathrm{~V} / 40 \mathrm{~A}$ to $40 \mathrm{~V} / 20 \mathrm{~A}$, etc. are available corresponding to plural number of conventional regulated DC power supplies.

- 90° rotating panel operation part
90° rotating panel installs the unit vertically or horizontally.
- Sequence function

Stand alone sequence operation is possible sending the sequence made with PC to the unit through optional IF-60GP or IF-60RU interface board.

- Control of constant power

In addition to constant voltage(CV) and constant current(CC), constant power(CP) is also available for use of supplying arbitrary power or as limit function to protect being added over power to load side.

Specifications

Model	Reting Power	Output (Voltage, Current)	Ripple		Lineregulation		Load regulation		$\begin{aligned} & \text { Dimensions } \\ & \text { W×H×D } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { Max. } \\ & \text { dimensions } \\ & \text { W×HxD } \\ & (\mathrm{mm}) \end{aligned}$	Power consumption W/ VA (approx.)	$\begin{aligned} & \text { Weight } \\ & \text { (approx) } \\ & \text { (apt } \end{aligned}$
			cV	c	CV	CC	C	CC				
			mVms	mAms	mv	mA	mv	mA				
PSF400L	400W	$\begin{aligned} & 0 \mathrm{~V}-80 \mathrm{~V}, \\ & 0 \mathrm{~A}-40 \mathrm{~A} \end{aligned}$	4	30	10	6	11	11	$\begin{gathered} 210 \times 124 \times \\ 290 \end{gathered}$	$\begin{gathered} 229 \times 143 \times \\ 338 \end{gathered}$	560 VA	5
PSF800L	800W	$\begin{aligned} & 0 \mathrm{~V}-80 \mathrm{~V}, \\ & 0 \mathrm{~A}-80 \mathrm{~A} \end{aligned}$	6	60	10	10	11	19	$\begin{gathered} 210 \times 124 \times \\ 290 \end{gathered}$	$\begin{gathered} 229 \times 143 x \\ 338 \end{gathered}$	1120VA	7
PSF- 400L2	$\begin{aligned} & \hline 400 \mathrm{w} \\ & \text { x2ch } \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V}-80 \mathrm{~V}, \\ & 0 \mathrm{~A}-40 \mathrm{~A} \end{aligned}$	4	30	10	6	11	11	$\begin{gathered} 210 \times 124 \times \\ 290 \end{gathered}$	$\begin{gathered} 229 \times 143 \times \\ 338 \\ \hline \end{gathered}$	1120VA	7
PSF800LS	800W	$\begin{aligned} & 0 \mathrm{~V}-80 \mathrm{~V}, \\ & 0 \mathrm{~A}-80 \mathrm{~A} \end{aligned}$	-	-	-	-	-	-	$\begin{gathered} 210 \times 124 \times \\ 290 \end{gathered}$	$\begin{gathered} 229 \times 143 x \\ 338 \end{gathered}$	1120VA	7

Output rating

Model name	PSF-400L	PSF-800L	PSF-400L2	PSF-800L.
Rating output voltage	80.00 V	80.00 V	$80.00 \mathrm{~V} \times 2 \mathrm{CH}$	80.00 V
Setting accuracy	0.1% setting ± 2 digit			
Resolution	10 mV			
Display accuracy	0.2% reading ± 2 digit			
Rating output current	40.00A	80.00A	$40.00 \mathrm{~A} \times 2 \mathrm{CH}$	80.00A
Setting Accuracy	0.2% setting ± 2 digit			
Resolution	10 mA			
Display accuracy	0.3\% reading \pm 2digit			
Rating output power	400W	800W	$400 \mathrm{~W} \times 2 \mathrm{CH}$	800W
Setting Accuracy	$\pm 10 \mathrm{~W}$			
Resolution	10W			
Display accuracy	0.5% reading ± 5 digit			

Constant voltage characteristics

Model name	PSF-400L	PSF-800L	PSF-400L2
Line regulation	$0.01 \% \pm 2 \mathrm{mV}$ of rating voltage		
Load regulation	$0.01 \% \pm 3 \mathrm{mV}$ of rating voltage		
Ripple noise (p-p)	90 mV	150 mV	90 mV
Ripple noise (rms)	4 mV	6 mV	1 mV
Transient response (typ)	1 ms		
Rising time (typ)	50 ms (Rating load) 50 ms (No load)		
Falling time (typ)	100 ms (Rating load) 500 ms (No load)		
Temperature coefficient (typ)	$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (after 30 minute warming up)		

PSF-L Series

90° Rotating Panel

- External control

Output voltage and current can be set through external voltage or PSF-L Series external resister, and to control output on/off by external contact signal.

- Application software for making sequence program can be downloaded from our website.
- Others

Off timer function, 3-point preset function, monitor out function (voltage, current and status), protection function, delay function (PSF-400L2 only), and tracking function (PSF-400L2 only).
-Parallel/series operation
Including master unit, 4 units in parallel and 2 units in series connection can be controlled by one master unit. Current expansion model(exclusive slave unit) in parallel connection is available.
 (using OP-21A)

Vertical installation (using OP-21B)

PSF-400L/800L + PSF-800LS

Constant current characteristics

Model name	PSF-400L	PSF-800L	PSF-400L2	
Line regulation	$0.01 \% \pm 2 \mathrm{~mA}$ of rating voltage			
Load regulation	$0.02 \% \pm 3 \mathrm{~mA}$ of rating voltage			
Ripple noise (rms)	30 mA	60 mA	30 mA	
Temperature coefficient (typ)	$100 \mathrm{pm} /{ }^{\circ} \mathrm{C}$ (after 30 minute warming up)			
Constant power characteristics				
Model name	PSF-400L	PSF-800L	PSF-400L2	
Line regulation	0.5\% $\pm 10 \mathrm{~W}$			
Input rating				
Model name	PSF-400L	PSF-800L	PSF-400L2	PSF-800LS
Input voltage	single phase AC100V-AC240V frequency : $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$			
Power consumption	560VA	1120 VA	1120 VA	1120VA
Power factor	0.99			
Rush current	35Amax	70Amax	70Amax	70Amax

Options
IF-60GP
IF-60RU
GP-IB control board
OP-21A 2 A $/$ USB control board
OP-21B
Horizontal installation connection kit

HK-10	Handle kit
OP-22S	Series connection cable
OP-22P	Parallel connection cable

PS6-66A / PS6-66AR	(6V/66A)
PS6-133A / PS6-133AR	(6V/133A)
PS10-40A / PS10-40AR	(10V/40A)
PS10-80A / PS10-80AR	(10V/80A)
PS 10-120A / PS $10-120 A R$	(10V/120A)
PS20-20A / PS20-20AR	(20V/20A)
PS20-40A / PS20-40AR	(20V/40A)
PS20-60A / PS20-60AR	(20V/60A)
PS40-10A / PS40-10AR	(40V/10A)
PS40-20A / PS40-20AR	(40V/20A)
PS40-30A / PS40-30AR	(40V/30A)
PS60-6.6A / PS60-6.6AR	(60V/6.6A)
PS60-13.3A/ PS60-13.3AR	(60V/13.3A)
PS60-20A / PS60-20AR	(60V/20A)

- Four digits LED display

The high resolution display can indicate output voltage and current and power value. Voltage and current values can be easy to set with "digit key" by selecting a digit to be changed.

- Three points preset memory function

Possible to preset three kinds of voltage and current values inside for easy reading of setting values.

- HI-R Function

This function is useful for not to discharge secondary cell, not to ungild plating and so on.

- Off timer function

Possible to turn off output automatically after a lapse of preset time.

- Controlling transient build-up current function

This function enables to control current at output on and prevents current overshoot.

- Sequence function

Stand-alone sequence operation is possible by loading maximum 1000 steps sequence program from PC into the unit through optional IF-70GU or IF-7ORS interface board.

- Master slave operation

This function enable to operate plural same units in parallel up to 2400 W (up to 800 W for 6 V series) and in series for two units.

PS-A / PS-AR Series

Switching

- External analog control (PS-A type only)

The PS-A series can be controlled by external voltage or resistance for setting voltage and current values and by external contact for turning on/off output and selecting preset memory. PS-AR type dose not accommodate external analog control.
Optional remote control interface boards
IF-70GU (GP-IB and USB), IF-71RS (RS-232C) and IF-70PS (compatible with PS series) are available.
RS-232C standard PS-AR type
PS-AR type is included RS-232C control board. PS-AR type can connect max. 32 units and be controlled by PC. Simple and low-cost system can be provided.

* GP-IB or USB connection needs to install IF-70GU into the 1st unit (instead of RS-232C interface board).

	PS-AR Type	
External analog control	N/A	Standard equipment
RS-232C control	IF-70RS is enclosed. ${ }^{*}$	Option (IF-70RS)
GP-IB control	Option (IF-70GU)	Option (IF-70GU)
USB control	Option (IF-70GU)	Option (IF-70GU)

* IF-7ORS enclosed to PS-AR must be installed before using PS-AR.

Specifications

Model	Output rating		Ripple		Line regulation		Load regulation		Power consumption WivA(approx:	Dimensions type *	Weight kg (approx.)
	Voltage (V)	Current (A)	$\underset{(\mathrm{mV} \mathrm{~ms})}{c}$	(mArms)	CV	CC	CV	CC			
PS6-66A/PS6-66AR	0-6	0-66	10	120	8	125	11	125	630	Type I	3.2
PS6-133A/PS6-133AR	0-6	0-133	10	260	8	245	11	245	1250	Type II	5.3
PS10-40A/PS10-40AR	0-10	0-40	10	70	10	75	15	75	600	Type I	3.2
PS10-80A/PS10-80AR	0-10	0-80	10	160	10	150	15	150	1200	Type II	5.3
PS 10-120A/PS10-120AR	0-10	0-120	10	220	10	225	15	225	1800	Type III	7.5
PS20-20A/PS20-20AR	0-20	0-20	10	40	15	41	25	41	600	Type I	3.2
PS20-40A/PS20-40AR	0-20	0-40	10	92	15	82	25	82	1200	Type II	5.3
PS20-60A/PS20-60AR	0-20	0-60	10	120	15	123	25	123	1800	Type III	7.5
PS40-10A/PS40-10AR	0-40	0-10	10	20	23	25	41	25	600	Type I	3.2
PS40-20A/PS40-20AR	0-40	0-20	10	60	23	50	41	50	1200	Type II	5.3
PS40-30A/PS40-30AR	0-40	0-30	15	80	23	75	41	75	1800	Type III	7.5
PS60-6.6A/PS60-6.6AR	0-60	0-6.6	10	12	35	17	65	17	550	Type I	3.2
PS60-13.3A/PS60-13.3AR	0-60	0-13.3	15	44	35	34	65	34	1100	Type II	5.3
PS60-20A/PS60-20AR	0-60	0-20	20	55	35	51	65	51	1650	Type III	7.5

[^1]| Options | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IF-70GU | GP-IB/USB Interface card | CB-0603S | Modular cable (0.3m) | OP-23P3 | Paralle connection signal cable(2 to 3units) |
| IF-71RS | RS-232C Interface card | CB-0615S | Modular cable (1.5m) | OP-23P6 | Paralle connection signal cable(2 to 6units) |
| IF-70PS | PS Compatible Analog Control Card | CB-0630S | Modular cable (3m) | OP-23S | Series connection signal cable |
| HK-11 | Handle kit | CB-06100S | Modular cable (10m) | | |

As compared with dropper-method DC power supplies, the unique switching and dropper circuit systems bring low output noise at same level, light weight less than half, and compact body. PDS-A power supply corresponds to EU RoHS regulation in consideration of environment. GP-IB, RS-232C, USB and LAN optional control boards are available and users are able to download API and drivers software from TEXIO web-site.

- Satisfying CE Mark Certification Requirements
- Series/Parallel Operation
- 3-points Voltage/Current Preset
- Various Protection Functions
- Off timer function
- Controlling transient build-up current function
- Sequence function
- External analog control function
Options

IF-70GU	GP-IB/USB Interface card
IF-71RS	RS-232C Interface card
IF-71LU	LAN/USB Interface card
OP-23P3	Paralle connection signal cable(2 to 3units)
OP-23S	Series connection signal cable
CB-0603S	Modular cable (0.3m)
CB-0615S	Modular cable (1.5m)
CB-0630S	Modular cable $(3 \mathrm{~m})$
CB-06100S	Modular cable $(10 \mathrm{~m})$
HK-11	Handle kit

Specifications

PDS-A Series

Low ripple / noise
$0.5 \mathrm{mVrms}(30 \mathrm{mVp}-\mathrm{p})$ same as dropper method

Comparing Ripple/ Noise (output: rated 36V/ 10A)
High speed transient response at $100 \mu \mathrm{~s}$ (typ)
(Approx. 1 ms for switching method power supplies)

Comparing transient response
Compared to Dropper method PD18-20AD

* Compact size

Max. over 50\% downsized compared with PD-AD series

* Light weight

Model	Output	Ripple		Line regulation		Load regulation		Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	Max. dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	Power consumption VA(approx.)	Weight kg (approx.)
	(Voltage, Current)	cV	CO	CV	CC	CV	CC				
		mVrms	mArms	mV	mA	mV	mA				
PDS20-10A	0V-20V, 0A-10A	0.5	10	2	5	3	5	$140 \times 124 \times 364$	$140.8 \times 141.2 \times 415.5$	340 VA	5.2
PDS20-18A	0V-20V, 0A-18A	0.5	10	2	5	3	5	$140 \times 124 \times 364$	$140.8 \times 141.2 \times 415.5$	570VA	5.2
PDS20-36A	0V-20V, 0A-36A	0.5	10	2	10	3	5	$210 \times 124 \times 364$	$210.8 \times 141.2 \times 415.5$	1100 VA	7.5
PDS36-6A	$0 \mathrm{~V}-36 \mathrm{~V}, 0 \mathrm{~A}-6 \mathrm{~A}$	0.5	5	2.8	1	3.8	5	$140 \times 124 \times 364$	$140.8 \times 141.2 \times 415.5$	330 VA	5.2
PDS36-10A	0V-36V, 0A-10A	0.5	5	2.8	1	3.8	5	$140 \times 124 \times 364$	$140.8 \times 141.2 \times 415.5$	520 VA	5.2
PDS36-20A	0V-36V, 0A-20A	0.5	10	2.8	5	3.8	5	$210 \times 124 \times 364$	$210.8 \times 141.2 \times 415.5$	1050VA	7.5
PDS60-6A	$0 \mathrm{~V}-60 \mathrm{~V}, 0 \mathrm{~A}-6 \mathrm{~A}$	0.5	5	4	1	5	5	$140 \times 124 \times 364$	$140.8 \times 141.2 \times 415.5$	510VA	5.2
PDS60-12A	0V-60V, 0A-12A	0.5	10	4	5	5	5	$210 \times 124 \times 364$	$210.8 \times 141.2 \times 415.5$	1000VA	7.5

4-Output
PW8-3AQP
$(+8 \mathrm{~V} / 3 \mathrm{~A},+8 \mathrm{~V} / 3 \mathrm{~A},+8 \mathrm{~V} / 3 \mathrm{~A},+8 \mathrm{~V} / 3 \mathrm{~A})$
PW18-1.8AQ
$(+18 \mathrm{~V} / 1.8 \mathrm{~A},-18 \mathrm{~V} / 1.8 \mathrm{~A},+8 \mathrm{~V} / 2 \mathrm{~A},-6 \mathrm{~V} / 1 \mathrm{~A})$
PW24-1.5AQ
$(+24 \mathrm{~V} / 1.5 \mathrm{~A},-24 \mathrm{~V} / 1.5 \mathrm{~A},+8 \mathrm{~V} / 2 \mathrm{~A},+8 \mathrm{~V} / 2 \mathrm{~A})$
3-Output
$\begin{array}{ll}\text { PW8-3ATP } & (+8 \mathrm{~V} / 3 \mathrm{~A},+8 \mathrm{~V} / 3 \mathrm{~A},+18 \mathrm{~V} / 1.5 \mathrm{~A}) \\ \text { PW16-2ATP } & (+16 \mathrm{~V} / 2 \mathrm{~A},+16 \mathrm{~V} / 2 \mathrm{~A},+16 \mathrm{~V} / 2.5 \mathrm{~A}\end{array}$
PW18-2ATP
$(+18 \mathrm{~V} / 2 \mathrm{~A},+36 \mathrm{~V} / 1 \mathrm{~A},+8 \mathrm{~V} / 2 \mathrm{~A})$
2-Output
PW16-5ADP
$(+16 \mathrm{~V} / 5 \mathrm{~A},+6 \mathrm{~V} / 3 \mathrm{~A})$
PW18-3AD (+18V/3A,-18V/3A)
PW18-3ADP
(+18V/3A, +18V/3A)
PW36-1.5AD (+36V/1.5A, $-36 \mathrm{~V} / 1.5 \mathrm{~A})$
PW36-1.5ADP (+36V/1.5A, +36V/1.5A)
2 or 3-Output with Remote Sensing
PW18-1.3ATS ($+18 \mathrm{~V} / 1.3 \mathrm{~A},-18 \mathrm{~V} / 1.3 \mathrm{~A},+6 \mathrm{~V} / 5 \mathrm{~A}$)
PW26-1ATS (+26V/1A, $-26 \mathrm{~V} / 1 \mathrm{~A},+6 \mathrm{~V} / 5 \mathrm{~A})$
PW8-5ADPS ($+8 \mathrm{~V} / 5 \mathrm{~A},+8 \mathrm{~V} / 5 \mathrm{~A}$)

- One-Dial Control

All setting conditions are selected at the single rotary-encoder.

- Tracking

Output voltage and current value of positive and negative can be adjusted
from zero at the same time by the absolute value tracking.
4-Point Pair Presetting of Voltage and Current Value

- ON/OFF Delay Time

Delay-time can be set in each output.

- Output Selection

On and off of each output can be selected and set besides the main output key.

- Key Lock

A key lock function provides to hold all setting values except for power switch.
Limit \& Status Key
The output voltage and current values can be confirmed by the limit-key. The trucking of each output and the condition of delay setting can be confirmed by the status-key.

- Various External Controls

ON/OFF of main output, PRESET 1 to 4 and alarm.

- Overheating Protection
- GP-IB, USB, RS-232C

GP-IB/USB inter face card (IF-41GU),USB inter face card (IF-41USB) and RS-232C

PW-A Series

Multi Output

 CP-IB
 RS-232C
 Her
 USE

Delay Time function Time chart example

Delay Time function Time chart example(2)
MAIN OUTPUT A CHANNEL OUTPU B CHANNEL OUTPU

C CHANNEL OUTPUT D CHANNEL OUTPU

Specifications

Model	Channels					Ripple		Line regulation		Load regulation		Power consumption WI VA (approx.)
		(Voltage, Current)				CV	CC	CV	CC	CV	CC	
						mVrms	mArms	mV	mA	mV	mA	
PW8-3AQP	4	$+8 \mathrm{~V} / 3 \mathrm{~A}$	0.5	1.5	1	2	2	5	245W/300VA			
PW18-1.8AQ	4	$+18 \mathrm{~V} / 1.8 \mathrm{~A}$	-18V/1.8A	$+8 \mathrm{~V} / 2 \mathrm{~A}$	-6V/1A	0.5	1.5	1	2	2	5	191W/255VA
PW24-1.5AQ	4	$+24 \mathrm{~V} / 1.5 \mathrm{~A}$	-24V/1.5A	$+8 \mathrm{~V} / 2 \mathrm{~A}$	$+8 \mathrm{~V} / 2 \mathrm{~A}$	0.6 *1	1.5	1	2	2	5	220W/276VA
PW8-3ATP	3	$+8 \mathrm{~V} / 3 \mathrm{~A}$	$+8 \mathrm{~V} / 3 \mathrm{~A}$	+18V/1.5A		0.5	1.5	1	2	2	5	183W/240VA
PW16-2ATP	3	$+16 \mathrm{~V} / 2 \mathrm{~A}$	$+16 \mathrm{~V} / 2 \mathrm{~A}$	+16V/2.5A		0.5	1.5	1	2	2	5	210W/267VA
PW18-2ATP	3	$+18 \mathrm{~V} / 2 \mathrm{~A}$	$+36 \mathrm{~V} / 1 \mathrm{~A}$	$+8 \mathrm{~V} / 2 \mathrm{~A}$		0.6 *1	1.5	1	2	2	5	178W/242VA
PW18-1.3ATS	3	$+18 \mathrm{~V} / 1.3 \mathrm{~A}$	-18V/1.3A	$+6 \mathrm{~V} / 5 \mathrm{~A}$		0.5	1.5	1	2	2	5	179W/230VA
PW26-1ATS	3	$+26 \mathrm{~V} / 1 \mathrm{~A}$	-26V/1A	$+6 \mathrm{~V} / 5 \mathrm{~A}$		0.6 *1	1.5	1	2	2	5	193W/250VA
PW8-5ADPS	2	$+8 \mathrm{~V} / 5 \mathrm{~A}$	$+8 \mathrm{~V} / 5 \mathrm{~A}$			0.5	1.5	1	2	2	5	214W/247VA
PW16-5ADP	2	$+16 \mathrm{~V} / 5 \mathrm{~A}$	$+6 \mathrm{~V} / 3 \mathrm{~A}$			0.5	1.5	1	2	2	5	212W/256VA
PW18-3AD	2	$+18 \mathrm{~V} / 3 \mathrm{~A}$	-18V/3A			0.5	1.5	1	2	2	5	213W/278VA
PW18-3ADP	2	$+18 \mathrm{~V} / 3 \mathrm{~A}$	$+18 \mathrm{~V} / 3 \mathrm{~A}$			0.5	1.5	1	2	2	5	213W/278VA
PW36-1.5AD	2	$+36 \mathrm{~V} / 1.5 \mathrm{~A}$	-36V/1.5A			0.6 *1	1.5	1	2	2	5	189W/255VA
PW36-1.5ADP	2	$+36 \mathrm{~V} / 1.5 \mathrm{~A}$	$+36 \mathrm{~V} / 1.5 \mathrm{~A}$			0.6 *1	1.5	1	2	2	5	$189 \mathrm{~W} / 255 \mathrm{VA}$

Voltage setting resolution	1 mV (at $\pm 6 \mathrm{~V},+8 \mathrm{~V}$ output), 10 mV (at $\pm 16 \mathrm{~V}, \pm 18 \mathrm{~V}, \pm 26 \mathrm{~V}, \pm 36 \mathrm{~V}$ output)
Current setting resolution	1 mA
Voltage load regulation	2 mV (with respect to change from 0 to 100%)
Current load regulation	5 mA (with respect to change from 0 to 100%)
Voltmeter	4 digit, red LED
Ammeter	4 digit, red LED
Power requirement	AC100/115/200/230V $\pm 10 \%$, $50 / 60 \mathrm{~Hz}$
Power consumption	Approx.220W
Case dimensions	$138(\mathrm{~W}) \times 124(\mathrm{H}) \times 380$ (D) mm
Weight	Approx.9.1 kg
instruction manual $\times 1$, power cable $\times 1$, External control cable $\times 1$, Remote sensing connector lead $\times 2$ (PW26-1ATS, PW18-1.3ATS only)	

[^2]```
PAR18-6A (18V/6A)
PAR36-3A (36V/3A)
Built-in microprocessor Remote sensing
CV/CC power supply Rack-mount size
O Key Lock Limit Key
- GP-IB, USB, RS-232C
GP-IB/USB interface card (IF-41GU), USB interface card (IF-41USB) and RS-232C card (IF-41RS) provided as user option.
```


## PAR-A Series

## Remote Sensing



Specifications

| Model | Output (Voltage, Current) | Ripple |  | Line regulation |  | Load regulation |  | Dimensions W×HxD(mm) | Max dimensions W×HxD(mm) | Power consumption W/VA(approx.) | Weight kg (approx.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CV}(\mathrm{mV}$ ms) | CC(mArms) | cV(mV) | CC(mA) | CV(mV) | CC(mA) |  |  |  |  |
| PAR18-6A | $0 \mathrm{~V}-18 \mathrm{~V}, 0 \mathrm{~A}-6 \mathrm{~A}$ | 0.5 | 2 | 1 | 2 | 2 | 5 | $138 \times 124 \times 380$ | $140 \times 148 \times 403$ | 213W/278VA | 9.1 |
| PAR36-3A | $0 \mathrm{~V}-36 \mathrm{~V}, 0 \mathrm{~A}-3 \mathrm{~A}$ | 0.5 | 2 | 1 | 2 | 2 | 5 | $138 \times 124 \times 380$ | $140 \times 148 \times 403$ | 189W/255VA | 9.1 |

Setting Resolution
Voltage: 1 mV ( $10 \mathrm{mV}:+16 \mathrm{~V},+/-18 \mathrm{~V},+/-24 \mathrm{~V},+/-26 \mathrm{~V},+/-36 \mathrm{~V})$
Current: 1 mA


Remote Sensing function
Remote Sensing function can compensate voltage drop caused by cable impedance.
PW26-1ATS, PW18-1.3ATS ,PW8-5ADPS and PAR-A series only.


Options

| IF-41GU | GP-IB/USB interface board |
| :--- | :--- |
| IF-41RS | RS-232C interface board |
| IF-41USB | USB interface board |
| TA-66 | D-sub 9pin - Monular connector changer |
| CB-2420P | GP-IB cable |


| CB-0603S | Modular cable $(0.3 \mathrm{~m})$ |
| :--- | :--- |
| CB-0615S | Modular cable $(1.5 \mathrm{~m})$ |
| CB-0630S | Modular cable $(3.0 \mathrm{~m})$ |
| CB-06100S | Modular cable $(10 \mathrm{~m})$ |
|  |  |

## Regulated DC Power Supplies

| PA10-5B | $(10 \mathrm{~V} / 5 \mathrm{~A})$ | PA80-1B | $(80 \mathrm{~V} / 1 \mathrm{~A})$ |
| :--- | :---: | :--- | :--- |
| PA 18-1.2BVT $(18 \mathrm{~V} / 1.2 \mathrm{~A})$ | PA 120-0.6B | $(120 \mathrm{~V} / 0.6 \mathrm{~A})$ |  |
| PA18-2BVT | $(18 \mathrm{~V} / 2 \mathrm{~A})$ | PA160-0.4B | $(160 \mathrm{~V} / 0.4 \mathrm{~A})$ |
| PA18-3B | $(18 \mathrm{~V} / 3 \mathrm{~A})$ | PA250-0.25B | $(250 \mathrm{~V} / 0.25 \mathrm{~A})$ |
| PA18-5B | $(18 \mathrm{~V} / 5 \mathrm{~A})$ | PA250-0.42B | $(250 \mathrm{~V} / 0.42 \mathrm{~A})$ |
| PA36-1.2BVT $(36 \mathrm{~V} / 1.2 \mathrm{~A})$ | PA350-0.2B | $(350 \mathrm{~V} / 0.2 \mathrm{~A})$ |  |
| PA36-2B | $(36 \mathrm{~V} / 2 \mathrm{~A})$ | PA600-0.1B | $(600 \mathrm{~V} / 0.1 \mathrm{~A})$ |
| PA36-3B | $(36 \mathrm{~V} / 3 A)$ |  |  |

## PA-B Series



GP-IB

- Monitor output

Option: GP-IB Adapter (GP-600B and OP-18-PAB)

Specifications

| Model | Output | Ripple |  | Line regulation |  | Load regulation |  | Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ | Max. dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$ | Power consumption WIVA(approx.) | Weight kg (approx.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (Voltage,Current | cV | CC | CV | CC | CV | CC |  |  |  |  |
|  |  | mVrms | mArms | mV | mA | mV | mA |  |  |  |  |
| PA10-5B | 0V-10V, 0A-5A | 0.5 | 5 | 1 | 2 | 5 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 120W/150VA | 6.6 |
| PA18-1.2BVT | 0V-18V, 0A-1.2A | 0.5 | 1 | 1 | 2 | 2 | 5 | $104 \times 124 \times 270$ | $106.2 \times 144.3 \times 288.3$ | 50W/60VA | 4.7 |
| PA18-2BVT | $0 \mathrm{~V}-18 \mathrm{~V}, 0 \mathrm{~A}-2 \mathrm{~A}$ | 0.5 | 1 | 1 | 2 | 2.5 | 5 | $104 \times 124 \times 270$ | $106.2 \times 144.3 \times 288.3$ | 75W/100VA | 4.7 |
| PA18-3B | $0 \mathrm{~V}-18 \mathrm{~V}, 0 \mathrm{~A}-3 \mathrm{~A}$ | 0.5 | 1 | 1 | 2 | 3 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 110W/140VA | 6.6 |
| PA18-5B | 0V-18V, 0A-5A | 0.5 | 5 | 1 | 2 | 5 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 165W/210VA | 6.6 |
| PA36-1.2BVT | 0V-36V, 0A-1.2A | 0.5 | 1 | 2 | 2 | 2 | 5 | $104 \times 124 \times 270$ | $106.2 \times 144.3 \times 288.3$ | $80 \mathrm{~W} / 105 \mathrm{VA}$ | 4.7 |
| PA36-2B | $0 \mathrm{~V}-36 \mathrm{~V}, 0 \mathrm{~A}-2 \mathrm{~A}$ | 0.5 | 2 | 2 | 2 | 3 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 130W/165VA | 6.6 |
| PA36-3B | $0 \mathrm{~V}-36 \mathrm{~V}, 0 \mathrm{~A}-3 \mathrm{~A}$ | 0.5 | 2 | 2 | 2 | 4 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 170W/220VA | 6.6 |
| PA80-1B | $0 \mathrm{~V}-80 \mathrm{~V}, 0 \mathrm{~A}-1 \mathrm{~A}$ | 1 | 2 | 5 | 2 | 5 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 140W/170VA | 6.6 |
| PA120-0.6B | 0V-120V, 0A-0.6A | 1.2 | 1 | 7 | 1 | 7 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 115W/155VA | 6.6 |
| PA160-0.4B | $0 \mathrm{~V}-160 \mathrm{~V}, 0 \mathrm{~A}-0.4 \mathrm{~A}$ | 1.6 | 1 | 8 | 1 | 8 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 100W/150VA | 6.6 |
| PA250-0.25B | 0V-250V, 0A-0.25A | 2.5 | 1 | 15 | 0.5 | 15 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 105W/140VA | 6.6 |
| PA250-0.42B | 0V-250V, 0A-0.42A | 2.5 | 1 | 15 | 1 | 15 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 150W/220VA | 6.6 |
| PA350-0.2B | $0 \mathrm{~V}-350 \mathrm{~V}, 0 \mathrm{~A}-0.2 \mathrm{~A}$ | 3.5 | 1 | 20 | 0.5 | 20 | 5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 110W/150VA | 6.6 |
| PA600-0.1B | $0 \mathrm{~V}-600 \mathrm{~V}, 0 \mathrm{~A}-0.1 \mathrm{~A}$ | 5 | 1 | 30 | 0.5 | 30 | 2.5 | $104 \times 124 \times 350$ | $106.2 \times 144.3 \times 368.3$ | 100W/130VA | 6.6 |

Options

| GP-600B | GP-IB adapter |
| :--- | :--- |
| OP-18-PAB | Connection cable between PA-B and GP-600B (1pcs) |
| OP-20GC | Front output terminal guard cap (2pcs) |

## GP-600B

GP-IB Adapter for PA-B Series Power Supplies


## DC Electronic Loads

| LSG-175 | $(150 \mathrm{~V} / 35 \mathrm{~A} / 175 \mathrm{~W})$ |
| :--- | :--- |
| LSG-350 | $(150 \mathrm{~V} / 70 \mathrm{~A} / 350 \mathrm{~W})$ |
| LSG-1050 | $(150 \mathrm{~V} / 210 \mathrm{~A} / 1050 \mathrm{~W})$ |
| LSG-2100S | $(150 \mathrm{~V} / 420 \mathrm{~A} / 2100 \mathrm{~W})$ (Booster for LSG-1050) |

Operating Mode : C.V/C.C/C.R/C.P/C.C + C.V/C.R + C.V/C.P + C.C .
OHigh Precision, High Resolution (10 A),High Speed Variable Slew Rate (16A/us).
O Sequence Function for High Efficient Load Simulations.
-Parallel Connection of Inputs for Higher Capacity. (With 4 Booster Units : Max 9.45 kW or 4 Master Units)
Oxternal Channel Control/Monitoring via Analog Control Connector.
-Program Mode to Create Work Routines for Repetitive Tests.
OMultiple-Interface : USB 2.0 Device/Host and GP-IB/RS-232C.
Adjustable OPP/OCP/OVP Setting.

## Specifications

| CC Mode |  |  |  |
| :---: | :---: | :---: | :---: |
| Model | LSG-175 | LSG-350 | LSG-1050 |
| Operating Range |  |  |  |
| H Range | 0A~35A | 0A~70A | 0A~210A |
| M Range | 0A~3.5A | 0A~7A | 0A~21A |
| L Range | 0A~0.35A | 0A~0.7A | 0A~2.1A |
| Resolution |  |  |  |
| H Range | 1 mA | 2mA | 10 mA |
| M Range | 0.1 mA | 0.2 mA | 1 mA |
| L Range | 0.01 mA | 0.02 mA | 0.1 mA |
| Accuracy of Setting |  |  |  |
| H, M Range | $\pm\left(0.2 \%\right.$ of set $+0.1 \%$ of f.s. ${ }^{\text {1 }}$ ) $)+\mathrm{Vin}^{* 2} / 500 \mathrm{k} \Omega$ |  |  |
| L Range | $\pm(0.2 \%$ of set $+0.1 \%$ of f.s. $)+\mathrm{Vin}^{\text {2 } / 500 ~ k ~} \Omega$ |  |  |
| Parallel Operating | $\pm\left(1.2 \%\right.$ of set $+1.1 \%$ of f.s. ${ }^{\text {² }}$ ) |  |  |
| *1 Full scale of H range <br> *2 Vin: input terminal voltage of electronic load <br> *3 M range applies to the full scale of H range |  |  |  |
| CR Mode |  |  |  |
| Model | LSG-175 | LSG-350 | LSG-1050 |
| Operating Range ${ }^{-1}$ |  |  |  |
| H Range | $\begin{array}{\|l\|} \hline 23.3336 \mathrm{~S} \sim 400 \mathrm{uS} \\ (42.857 \mathrm{~m} \Omega \sim 2.5 \mathrm{k} \Omega) \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 46.6672 \mathrm{~S} \sim 800 \mathrm{uS} \\ (21.428 \mathrm{~m} \Omega \sim 1.25 \mathrm{k} \Omega) \end{array}$ | $\begin{aligned} & 140.0016 \mathrm{~S} \sim 2.4 \mathrm{mS} \\ & (7.1427 \mathrm{~m} \Omega \sim 416.6667 \Omega) \\ & \hline \end{aligned}$ |
| M Range | $\begin{array}{\|l\|} \hline 2.33336 \mathrm{~S} \sim 40 \mathrm{uS} \\ (428.566 \mathrm{~m} \Omega \sim 25 \mathrm{k} \Omega) \\ \hline \end{array}$ | $\begin{aligned} & \text { 4.6667S~80uS } \\ & (214.28 \mathrm{~m} \Omega \sim 12.5 \mathrm{k} \Omega) \end{aligned}$ | $\begin{aligned} & \hline 14.0001 \mathrm{~S} \sim 242.4 \mathrm{uS} \\ & (71.427 \mathrm{~m} \Omega \sim 4.16667 \mathrm{k} \Omega) \end{aligned}$ |
| L Range | $\begin{array}{\|l\|} \hline 0.233336 S \sim 4 \mathrm{uS} \\ (4.28566 \Omega \sim 250 \mathrm{k} \Omega) \\ \hline \end{array}$ | $\begin{aligned} & \hline 0.46667 \mathrm{~S} \sim \mathrm{BUS} \\ & (2.1428 \Omega \sim 125 \mathrm{k} \Omega) \end{aligned}$ | $\begin{aligned} & \text { 1.40001S~24.24uS } \\ & (714.27 \mathrm{~m} \Omega \sim 41.6667 \mathrm{k} \Omega) \end{aligned}$ |
| Resolution |  |  |  |
| H Range | 400us | 800us | 2.4 mS |
| M Range | 40us | 80us | 240us |
| L Range | 4uS | 8uS | 24uS |
| Accuracy of Setting ${ }^{2}$ |  |  |  |
| H, M Range | $\pm\left(0.5 \%\right.$ of $\mathrm{set}^{.3}+0.5 \%$ of f.s. $\left.{ }^{\text {+4 }}\right)+\mathrm{Vin}^{4 /} / 500 \mathrm{k} \Omega$ |  |  |
| L Range | $\pm\left(0.5 \%\right.$ of set ${ }^{\text {+3 }}+0.5 \%$ of f.s. $)+\mathrm{Vin}^{\text {+5 }} / 500 \mathrm{k} \Omega$ |  |  |
| *1 Siemens[S] = Input current[A] / Input voltage[V] = $1 /$ resistance $[\Omega]$ <br> *2 Converted value at the input current. At the input current. It is not applied for the condition of the paralle operation. <br> *3 set $=$ Vin / Rset <br> *4 f.s. $=$ Full scale of High Range <br> *5 Vin $=$ Input terminal voltage of electronic load |  |  |  |
| CV Mode |  |  |  |
| Model | LSG-175 | LSG-350 | LSG-1050 |
| Operating Range |  |  |  |
| H Range | 1.5V $\sim 150 \mathrm{~V}$ | 1.5V~150V | 1.5V~150V |
| L Range | $1.5 \mathrm{~V} \sim 15 \mathrm{~V}$ | $1.5 \mathrm{~V} \sim 15 \mathrm{~V}$ | $1.5 \mathrm{~V} \sim 15 \mathrm{~V}$ |
| Resolution |  |  |  |
| H Range | 10 mV | 10 mV | 10 mV |
| L Range | 1 mV | 1 mV | 1 mV |
| Accuracy of Setting ${ }^{-1}$ |  |  |  |
| H, L Range | $\pm(0.1 \%$ of set + 0.1 \% of f.s.) |  |  |
| *1 At the sensing point during remote sensing under the operating range of the input voltage. It is also applied for the condition of the parallel operation. |  |  |  |

## LSG Series

High Capacity Electronic Load (Max. 9.45 kW ) LabVIEW


| CP Mode |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Model | LSG-175 | LSG |  | LSG-1050 |
| Operating Range |  |  |  |  |
| H Range | 17.5W~175W |  | 35W~350W | 105W~1050W |
| M Range | 1.75W $\sim 17.5 \mathrm{~W}$ |  | 3.5W~35W | 10.5W~105W |
| L Range | 0.175W~1.75W |  | 0.35W~3.5W | $1.05 \mathrm{~W} \sim 10.5 \mathrm{~W}$ |
| Resolution |  |  |  |  |
| H Range | 10 mW |  | 10 mW | 100 mW |
| M Range | 1 mW |  | 1 mW | 10 mW |
| L Range | 0.1 mW |  | 0.1 mW | 1 mW |
| Accuracy of Setting ${ }^{-1}$ |  |  |  |  |
|  | $\pm\left(0.6\right.$ \% of set + 1.4 \% of f.s. ${ }^{2}$ ) |  |  |  |
| *1 It is not applied for the condition of the parallel operation. *2 M range applies to the full scale of H range. |  |  |  |  |
| Meter |  |  |  |  |
| Model | LSG-175 |  | LSG-350 | LSG-1050 |
| Voltmeter |  |  |  |  |
| H Range | 0.00V~150.00V |  | 0.00V~150.00V | 0.00V $\sim 150.00 \mathrm{~V}$ |
| L Range | $0.000 \mathrm{~V} \sim 15.000 \mathrm{~V}$ |  | 0.000V 15.000 V | $0.000 \mathrm{~V} \sim 15.000 \mathrm{~V}$ |
| Accuracy | $\pm(0.1 \%$ of rdg $+0.1 \%$ of f.s.) |  |  |  |
| Ammeter |  |  |  |  |
| H, M Range | 0.000A~35.000 A |  | 0.000A~70.000A | 0.00A~210.00A |
| L Range | $0.00 \mathrm{~A} \sim 350.00 \mathrm{~mA}$ |  | 0.00A~700mA | 0.0000A~2.1000A |
| Accuracy | $\begin{aligned} & \pm(0.2 \% \text { of rdg }+0.3 \% \text { of } \mathrm{f.s}) \\ & \text { Parallel Operation: } \pm(1.2 \% \text { of rdg }+1.1 \% \text { of f.s. }) \end{aligned}$ |  |  |  |
| Wattmeter |  |  |  |  |
| H, M Range | 0.00W~175.00W |  | 0.00W~350.00W | 0.00W~1050W |
| L Range(CC/CR/ CV) | 0.000W~52.500W |  | 0.000W~105.000W | 0.00W~315.00W |
| L Range(CP) | 0.0000W~1.7500W |  | 0.0000W~3.5000W | 0.000W~10.500W |
| General |  |  |  |  |
| Model | LSG-175 | LSG-350 | LSG-1050 | LSG-2100S |
| Input Range |  |  |  |  |
|  | 90VAC $\sim 132 \mathrm{VAC} / 180 \mathrm{VAC} \sim 250 \mathrm{VAC}$ Single-phase |  |  |  |
| Input Frequency |  |  |  |  |
|  | $47 \sim 63 \mathrm{~Hz}$ |  |  |  |
| Power(max.) |  |  |  |  |
|  | 90VA | 110VA | 190VA | $230 \mathrm{VA}$ |
| Dimensions |  |  |  |  |
| W | 213.8 mm | 213.8 mm | 427.8 mm | 427.7 mm |
| H | 124.0 mm | 124.0 mm | 124.0 mm | 127.8 mm |
| D | 400.5 mm | 400.5 mm | 400.5 mm | 553.5 mm |
| Weight(Approx.) |  |  |  |  |
|  | 7 kg | 8 kg | 15 kg | 17 kg |
| Options |  |  |  |  |
| GRA-413 |  | Rack Mount Kit (EIA+JIS) for LSG-2100S |  |  |
| GRA-414-E |  | Rack Mount Kit (EIA) for LSG175/350/1050 |  |  |
| GRA-414-J |  | Rack Mount Kit (JIS) for LSG175/350/1050 |  |  |
| GTL-255 |  | Frame Link Cable |  |  |
| PEL-004 |  | GP-IB Control Board |  |  |

## DC Electronic Loads

| LSG-175H | $(800 \mathrm{~V} / 8.75 \mathrm{~A} / 175 \mathrm{~W})$ |
| :--- | :--- |
| LSG-350H | $(800 \mathrm{~V} / 17.5 \mathrm{~A} / 350 \mathrm{~W})$ |
| LSG-1050H | $(800 \mathrm{~V} / 52.5 \mathrm{~A} / 1050 \mathrm{~W})$ |
| LSG-2100SH | $(800 \mathrm{~V} / 105 \mathrm{~A} / 2100 \mathrm{~W})($ Booster for LSG-1050H) |

Operating Mode : C.V/C.C/C.R/C.P/C.C+C.V/C.R+C.V/C.P+C.C.
OHigh Precision, High Resolution, High Speed Variable Slew Rate.
OSequence Function for High Efficient Load Simulations.
-Parallel Connection of Inputs for Higher Capacity. (With 4 Booster Units : Max 9.45 kW or 4 Master Units)
OExternal Channel Control/Monitoring via Analog Control Connector.

- Program Mode to Create Work Routines for Repetitive Tests.

Multiple-Interface : USB 2.0 Device/Host and GP-IB/RS-232C.
Adjustable OPP/OCP/OVP Setting.

- Test mode for OCP/OPP/BATT


## Specifications

| CC Mode |  |  |  |
| :---: | :---: | :---: | :---: |
| Model | LSG-175H | LSG-350H | LSG-1050H |
| Operating Range |  |  |  |
| H Range | 0A~8.75A | 0A~17.5A | 0A~52.5A |
| M Range | 0A~0.875A | 0A~1.75A | 0A~5.25A |
| L Range | 0A~0.0875A | 0A~0175A | 0A~0.525A |
| Resolution |  |  |  |
| H Range | 0.3 mA | 0.6 mA | 2 mA |
| M Range | 0.03 mA | 0.06 mA | 0.2 mA |
| L Range | 0.003 mA | 0.006 mA | 0.02 mA |
| Accuracy of Setting |  |  |  |
| H, M Range | $\pm\left(0.2 \%\right.$ of set $+0.1 \%$ of f.s. $\left.{ }^{1}\right)+\mathrm{Vin}^{2} / 3.24 \mathrm{M} \Omega$ |  |  |
| L Range | $\pm(0.2 \%$ of set $+0.1 \%$ of f.s. $)+\mathrm{Vin}^{-2 / 3.24 M} \Omega$ |  |  |
| Parallel Operating | $\pm\left(1.2 \%\right.$ of set $+1.1 \%$ of f.s. ${ }^{\text {. }}$ ) |  |  |
| *1 Full scale of H range <br> *2 Vin: input terminal voltage of electronic load <br> *3 M range applies to the full scale of H range |  |  |  |
| CR Mode |  |  |  |
| Model | LSG-175H | LSG-350H | LSG-1050H |
| Operating Range ${ }^{4}$ |  |  |  |
| H Range | $\begin{aligned} & \hline 1.75 \mathrm{~S} \sim 30 \mathrm{uS} \\ & (571 \mathrm{~m} \Omega \sim 33.3 \mathrm{k} \Omega) \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.5 \mathrm{~S} \sim 60 \mathrm{uS} \\ & (285 \mathrm{~m} \Omega \sim 16.6 \mathrm{k} \Omega) \end{aligned}$ | $\begin{array}{\|l} \hline 10.5 \mathrm{~S} \sim 180 \mathrm{uS} \\ (95.2 \mathrm{~m} \Omega \sim 5.55 \mathrm{k} \Omega) \end{array}$ |
| M Range | $\begin{aligned} & \text { 175mS~3uS } \\ & (5.71 \Omega \sim 333 \mathrm{k} \Omega) \end{aligned}$ | $\begin{aligned} & 350 \mathrm{mS} \mathrm{\sim 6uS} \\ & (2.85 \Omega \sim 166 \mathrm{k} \Omega) \end{aligned}$ | $\begin{array}{\|l\|} \hline 1.05 \mathrm{~S} \sim 18 \mathrm{uS} \\ (952 \mathrm{~m} \Omega \sim 55.5 \mathrm{k} \Omega) \\ \hline \end{array}$ |
| L Range | $\begin{aligned} & \text { 17.5mS~0.3uS } \\ & (57.1 \Omega \sim 3.33 \mathrm{M} \Omega) \end{aligned}$ | $\begin{aligned} & 35 \mathrm{mS} \sim 0.6 \mathrm{uS} \\ & (28.5 \Omega \sim 1.66 \mathrm{M} \Omega) \end{aligned}$ | $\begin{aligned} & \hline 105 \mathrm{mS} \sim 1.8 \mathrm{uS} \\ & (9.52 \Omega \sim 555 \mathrm{kk} \Omega) \end{aligned}$ |
| Resolution |  |  |  |
| H Range | 30us | 60us | 180uS |
| M Range | 3us | 6 uS | 18uS |
| L Range | 0.3uS | 0.6uS | 1.8uS |
| Accuracy of Setting ${ }^{2}$ |  |  |  |
| H, M Range | $\pm\left(0.5 \%\right.$ of set ${ }^{\text {3 }}+0.5 \%$ of f.s. $\left.{ }^{.4}\right)+\mathrm{Vin}^{+5} / 3.24 \mathrm{M} \Omega$ |  |  |
| L Range | $\pm\left(0.5 \%\right.$ of $\operatorname{set}^{\text {3 }}+0.5 \%$ of f.s. $)+\mathrm{Vin}^{\text {+5/ } / 3.24 \mathrm{M} \Omega}$ |  |  |
| *1 Siemens[S] = Input current[A] / Input voltage[V] = $1 /$ resistance[ $\Omega$ ] <br> *2 Converted value at the input current. At the input current. It is not applied for the condition of the parallel operation. <br> * 3 set $=$ Vin / Rset <br> *4 f.s. $=$ Full scale of High Range <br> *5 Vin = Input terminal voltage of electronic load |  |  |  |
| CV Mode |  |  |  |
| Model | LSG-175H | LSG-350H | LSG-1050H |
| Operating Range |  |  |  |
| H Range | 5V~800V | 5V~1800V | 5V~800V |
| L Range | $5 \mathrm{~V} \sim 80 \mathrm{~V}$ | $5 \mathrm{~V} \sim 80 \mathrm{~V}$ | $5 \mathrm{~V} \sim 80 \mathrm{~V}$ |
| Resolution |  |  |  |
| H Range | 20 mV | 20 mV | 20 mV |
| L Range | 2 mV | 2 mV | 2 mV |
| Accuracy of Setting ${ }^{-1}$ |  |  |  |
| H, L Range | $\pm(0.2 \%$ of set + 0.2 \% of f.s.) |  |  |

LSG-H Series


| CP Mode |  |  |  |
| :---: | :---: | :---: | :---: |
| Model | LSG-175H | LSG-350H | LSG-1050H |
| Operating Range |  |  |  |
| H Range | 17.5W~175W | 35W~350W | 105W~1050W |
| M Range | 1.75W~17.5W | 3.5W~35W | 10.5W~105W |
| LRange | 0.175W~1.75W | 0.35W~3.5W | 1.05W~10.5W |
| Resolution |  |  |  |
| H Range | 10 mW | 10 mW | 100 mW |
| M Range | 1 mW | 1 mW | 10 mW |
| L Range | 0.1 mW | 0.1 mW | 1 mW |
| Accuracy of Setting ${ }^{\text {-1 }}$ |  |  |  |
|  | $\pm\left(0.6 \% \text { of set }+1.4 \% \text { of f.s. }{ }^{2}\right)+\operatorname{Vin}^{{ }^{-3}} / 3.24 \mathrm{M} \Omega$ |  |  |
| *1 It is not applied for the condition of the parallel operation. |  |  |  |


| Meter |  |  |  |
| :---: | :---: | :---: | :---: |
| Model | LSG-175H | LSG-350H | LSG-1050H |
| Voltmeter |  |  |  |
| H Range | 0.00V $\sim 800.00 \mathrm{~V}$ | 0.00V $\sim 800.00 \mathrm{~V}$ | 0.00V $\sim 800.00 \mathrm{~V}$ |
| L Range | 0.000 V 80.000 V | $0.000 \mathrm{~V} \sim 80.000 \mathrm{~V}$ | 0.000V 80.000V |
| Accuracy | $\pm(0.1 \%$ of rdg $+0.1 \%$ of f.s.) |  |  |
| Ammeter |  |  |  |
| H Range | 0.0000A~8.7500A | 0.000A~17.500A | 0.000A~52.500A |
| M Range | $0.00000 \mathrm{~A} \sim 0.87500 \mathrm{~A}$ | $0.0000 \mathrm{~A} \sim 1.7500 \mathrm{~A}$ | $0.0000 \mathrm{~A} \sim 5.2500 \mathrm{~A}$ |
| L Range | $0.000 \mathrm{~mA} \sim 87.500 \mathrm{~mA}$ | $0.00 \mathrm{~mA} \sim 175.00 \mathrm{~mA}$ | $0.00 \mathrm{~mA} \sim 525.00 \mathrm{~mA}$ |
| Accuracy | $\pm(0.2 \%$ of rdg $+0.3 \%$ of f.s) Parallel Operation: $\pm(1.2 \%$ of rdg $+1.1 \%$ of f.s.) |  |  |
| Wattmeter |  |  |  |
| H, M Range | 0.00W~175.00W | 0.00W~350.00W | 0.00W~1050W |
| L Range (CC/CR/CV) | 0.000W~52.500W | 0.000W~105.000W | 0.00W~315.00W |
| L Range(CP) | 0.0000W~ 1.7500W | 0.0000W~3.5000W | 0.000W~ 10.500W |


| General |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Model | LSG-175H | LSG-350H | LSG-1050H | LSG-2100SH |  |  |  |  |  |
| Input Range |  |  |  |  |  |  |  |  |  |
|  | $90 \mathrm{VAC} \sim 132 \mathrm{VAC} / 180 \mathrm{VAC} \sim 250 \mathrm{VAC}$ Single-phase |  |  |  |  |  |  |  |  |
| Input Frequency |  |  |  |  |  |  |  |  |  |



Options

| GRA-413 | Rack Mount Kit (EIA+JIS) for LSG-2100S |
| :--- | :--- |
| GRA-414-E | Rack Mount Kit (EIA) for LSG175/350/1050 |
| GRA-414-J | Rack Mount Kit (JIS) for LSG175/350/1050 |
| GTL-255 | Frame Link Cable |
| PEL-004 | GP-IB Control Board |

## DC Electronic Loads

## LW Series

LW75-151QV7A
LW75-151DV7A
LW151-151DV7A
LW301-151SV7A
LW301-151SV7B
(150V/15A/75W 4Channel) Multi Channel
(150V/15A/75W 2Channel)
(150V/30A/150W 2Channel)
(150V/60A/300W 1Channel)
(150V/60A/300W 1Channel)

- Multi-channel \& individual control

Each channel is isolated and can be controlled individually.

- Low cost High performance

The CC, CR, CV, CP modes are standard.

- 4 points presetting

4 sets of frequently used value can be preset.

- Key lock

Key lock function provides to hold all setting values.

- Various remote controls (user option)

It is possible to add the interface function of GP-IB or USB after purchasing as user option.

- Front input terminal (A type only)

Maximum input current is 30 A .

- Maximum 12 channel in full rack size

Specifications

| Model | Input Channel |  | Input |  | Constan | Current | Constant | esistance | Constant | Const | Power | Input <br> Terminal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Voltage | Current | Power | L range | H range | L range | H range | Power | L range | H range |  |
|  |  | V | A | W | A | A | $\Omega$ | $\Omega$ | V | W | W |  |
| LW75-151QV7A | 4ch | 1-150 | 0-15 | 0-75 | 0-2.5 | 0-15 | 0.6-6k | 0.1-1k | 0.00-150 | 0.625-12.5 | 3.75-75 | Front/Rear |
| LW75-151DV7A | 2ch |  | 0-15 | 0-75 | 0-2.5 | 0-15 | 0.6-6k | 0.1-1k |  | 0.625-12.5 | 3.75-75 | Front/Rear |
| LW151-151DV7A | 2ch |  | 0-30 | 0-150 | 0-5 | 0-30 | 0.3-3k | 0.05-500 |  | 1.25-25 | 7.5-150 | Front/Rear |
| LW301-151SV7A | 1ch |  | 0-30 | 0-300 | 0-10 | 0-30 | 0.15-1.5k | 0.025-250 |  | 2.5-50 | 15-300 | Front/Rear |
| LW301-151SV7B | 1ch |  | 0-60 | 0-300 | 0-10 | 0-60 | 0.15-1.5k | 0.025-250 |  | 2.5-50 | 15-300 | Rear Only |

Options

| Options |
| :--- |
| IF-50GP |
| IF-50USB |

## S-PL20

## Charge/Discharge Test with using regulated DC power supplies and Electronic Loads with ease

This software is a sequence program creator software for regulated DC power supplies and electric loads and most suitable for charge/discharge testing for secondary cells. Anyone can conduct setup, test and analysis easily.

- Language characters are selectable, Japanese, English and (Simplified / Traditional) Chinese. (Descriptions can be displayed with "HELP" window written in Japanese or English only.)

Max. 12ch Charge/Discharge systemThis software is compliant with 8 series of regulated DC power supplies and 3 series of electronic loads, and can control max. 12 sets of power supply and electronic load. (each power supplies and electronic loads must be same model. possible to control master-slave units.)

- TEST MODE functionA measuring sampling rate is changed depend on a number of channels or models of power supplies and electronic load. TEST MODE can check suitable sampling rate before testing.
- Creating sequence patterns with ease

It is easy to create new sequence patterns, to edit saved patterns, and to copy saved patterns.

- CSV test data, Graphical analyzing

All test data is saved as csv text data. Graphical analyzing function is available.
System Requirements
Microsoft Windows 10 (32bit/64bit)

## Regulated DC Power Supplies and Electronic Loads for ESCAS

- Regulated DC Power Supplies

PSF-L Series, PSF-H Series, PS-A Series, PU series, PDS-A series (with GP-IB or USB control borad option), PSW Series, PSU Series and PFR Series


PSF-L Series, PSF-H Series


PDS-A Series


PS-A Series

ESCAS (Easy Sequence Creator Application Software)
Test mode


Sequence pattern creator/editor mode


Graphical analyzing mode


Electronic Loads
LSG Series, LSA Series with IF-80GUR and LW Series with IF-50GP/USB ※RS-232C interface of IF-80GUR does not be used (GP-IB and USB only).


LSG Series


LSA Series


## High rez Constant Voltage Regulated DC Power Supplies Unit

## M-6150 (5V/300mA 12ch, GP-IB) <br> M-6151 (5V/300mA 14ch, GP-IB)

This unit has 12 ch or 14 ch of $5 \mathrm{~V} / 300 \mathrm{~mA}$ CV power supplies as like Li-ion battery cell. Each channels are isolated electrically and can be operated in series connection (up to 600 V ). It can simulate batteries and is very useful for testing ECU and BMS (Battery management system).

- 12ch type (M-6150) and 14ch type (M-6151)

Setting resolution: 0.1 mV Measurement resolution: $0.1 \mathrm{mV} / 0.01 \mathrm{~mA}$
Remote sensing function is available for all channels

- Each channel can be operated independently.
- Channels and Units can be connected in series operation (up to 600V)
- Optional Application Software

An optional application software is available and it can control max. 8 units of M-6150/6151, edit sequence test patterns, monitor status, save logging data as csv text, and display chart (voltage/current).

- GP-IB/USB interface

GP-IB and USB interfaces are equipped as standard for setting output voltages for each channel, capturing output voltage/current data and so on.

- Various protection functions are availableOHP, OVP, OCP and CL



## BATTERY CELL SIMULATOR (for BCM)

## Multi Channel



Specifications
Output

| Output channels |  | 12ch/unit (M-6150), 14ch/unit (M-6151) |
| :---: | :---: | :---: |
| Output voltage |  | DC 0 to 5V/ch |
| Output current |  | DC $300 \mathrm{~mA} / \mathrm{ch}$ |
| Operating mode |  | CV (Constant voltage) mode only |
| Output terminals |  | M3 screw terminals (on rear panel) |
| Voltage regulation characteristics |  |  |
| Output stability (at output terminal) | Line regulation | within $\pm(0.01 \%$ of setting $+2 \mathrm{mV})$ |
|  | Load regulation | within $\pm(0.01 \%$ of setting $+3 \mathrm{mV})$ |
| Ripple/Noise |  | within 1 mVrms (at output 5V) |
| GP-IB |  |  |
| Setting voltage | Cycle | 1 sec (for setting all cahnnels) |
|  | Resolution | 0.1 mV |
|  | Accuracy | $\pm 1 \mathrm{mV}$ |
| Measurement | Cycle | 1 sec (for reading all cahnnels) |
|  | Voltage resolution | 0.1 mV |
|  | Voltage accuracy | $\pm 1 \mathrm{mV}$ |
|  | Current resolution | $10 \mu \mathrm{~A}$ |
|  | Current accuracy | $\pm(0.2 \%$ of F.S. $+0.2 \%$ of reading) |
| Others |  |  |
| Power requirement |  | $100 \mathrm{~V} \pm 10 \% \mathrm{AC}, 50 / 60 \mathrm{~Hz}$, Single phase |
| Power consumption |  | 210VA |
| Groundable voltage |  | DC600V |
| Dimentions |  | $430 \mathrm{~mm}(\mathrm{~W}) \times 150 \mathrm{~mm}(\mathrm{H}) \times 500 \mathrm{~mm}$ (D) |
| Weight |  | Approx. 17 kg (including rack mount cramps) |

## 1 GS/s Digital Storage Oscilloscopes

| $D C S=1054 B$ | $(1 \mathrm{GS} / \mathrm{s} 4 \mathrm{ch} 50 \mathrm{MHz})$ |
| :--- | :--- |
| $D C S=1074 B$ | $(1 \mathrm{GS} / \mathrm{s} 4 \mathrm{ch} 70 \mathrm{MHz})$ |
| $D C S=1104 B$ | $(1 \mathrm{GS} / \mathrm{s} 4 \mathrm{ch} 100 \mathrm{MHz})$ |
| $D C S=1072 B$ | $(1 \mathrm{GS} / \mathrm{s} 2 \mathrm{ch} 70 \mathrm{MHz})$ |
| $D C S=1102 B$ | $(1 \mathrm{GS} / \mathrm{s} 2 \mathrm{ch} 100 \mathrm{MHz})$ |

DCS-1054B
(1GS/s 4ch 50MHz)
DCS-1074B
(1GS/s 4ch 100 MHz )
DCS-1072B
(1GS/s 2ch 100MHz)
$100 \mathrm{MHz} / 70 \mathrm{MHz} / 50 \mathrm{MHz}$ Digital Storage Oscilloscope
Waveform update rate up to $50,000 \mathrm{wfms} / \mathrm{s}$


256 gradstion 7inches WVGA display


10M memory depth per channel independently
1M FFT mathematical sampling analysis mode


Zoom In/Play and Pause Function

- Diversified Trigger Functions

X-Y Mode Display
Go/NoGo Function
Data Log Function
Digital Filter Function
36 Measurement Parameter Selections

## DCS-1000B Series

7" TFT WVGA color display
LabVIEW
C $\epsilon$


| $\mathbf{U S} \mathbf{B}$ | LAN |
| :---: | :---: |
| STANDARD |  |


| Specifications |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | DCS-1054B | DCS-1072B | DCS-1074B | DCS-1102B | DCS-1104B |
| Vertical |  |  |  |  |  |
| Channels | DCS-1xx4B : 4ch, DCS-1XX2B : 2ch+EXT |  |  |  |  |
| Bandwidth | DC $\sim 50 \mathrm{MHz}$ | DC $\sim 70 \mathrm{MHz}$ | DC $\sim 70 \mathrm{MHz}$ | DC $\sim 100 \mathrm{MHz}$ | $D C \sim 100 \mathrm{MHz}$ |
| Resolution | 8 bit @1M 2 : $1 \mathrm{mV} \sim 10 \mathrm{~V}$ |  |  |  |  |
| Input Impedance | 1M $/ / / 16 \mathrm{pF}$ |  |  |  |  |
| DC Gain Accuracy | $1 \mathrm{mV}: \pm 4 \%$ full scale, $>2 \mathrm{mV}: \pm 3 \%$ full scale |  |  |  |  |
| Waveform Signal Process | $+,-, x, \div$, FFT, FFTrms, User Defined Expression <br> FFT: Spectral magnitude. Set FFT Vertical Scale to Linear RMS or dBV RMS, and FFT Window to Rectangular, Hamming, Hanning, or Blackman-Harris |  |  |  |  |
| Trigger |  |  |  |  |  |
| Source | $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3 *, \mathrm{CH} 4^{*}$, Line, EXT** <br> *four channel models only. $\quad{ }^{* *}$ two channel models only. |  |  |  |  |
| Trigger Type | Edge, Pulse Width(Glitch), Video, Pulse Runt, Rise \& Fall(Slope), Timeout, Alternate, Event-Delay(1~65535 events), Time-Delay(Duration, 4nS~10S), Bus |  |  |  |  |
| Coupling | AC, DC, LF rej., Hf rej., Noise rej. |  |  |  |  |
| Sensitivity | 1div |  |  |  |  |
| External Trigger |  |  |  |  |  |
| Range | $\pm 15 \mathrm{~V}$ |  |  |  |  |
| Sensitivity | DC ~ 100MHz Approx. 100mV |  |  |  |  |
| Horizontal |  |  |  |  |  |
| Time base Range | 5ns/div ~ 100s/div (1-2-5 increments) ROLL: 100ms/div ~ 100s/div |  |  |  |  |
| Pre-trigger | 10 div maximum |  |  |  |  |
| Post-trigger | 2,000,000 div maximum. |  |  |  |  |
| Real Time Sample Rate | 1GSa/s max. |  |  |  |  |
| Record Length | Max. 10Mpts |  |  |  |  |
| Acquisition Mode | Normal, Average, Peak Detect, Single |  |  |  |  |
| Peak Detection | 2nS (typical) |  |  |  |  |
| Average | selectable from 2 to 256 |  |  |  |  |
| X-Y Mode |  |  |  |  |  |
| X-Axis Input | Channel 1; Channel 3* *four channel models only |  |  |  |  |
| Y-Axis Input | Channel 2; Channel 4* *four channel models only |  |  |  |  |
| Phase Shift | $\pm 3^{\circ}$ at 100 kHz |  |  |  |  |
| Cursors and Measurement |  |  |  |  |  |
| Cursors | Amplitude, Time, Gating available; Unit: Seconds(s), Hz(1/s), Phase(degree), Ration(\%) |  |  |  |  |
| Automatic Measurement | 36 sets: Pk-Pk, Max, Min, Amplitude, High, Low, Mean, Cycle Mean, RMS, Cycle RMS, Area, Cycle Area, ROVShoot, FOVShoot, RPREShoot, FPREShoot, Frequency, Period, RiseTime, FallTime, +Width, -Width, Duty Cycle, +Pulses, -Pulses, +Edges, -Edges, FRR, FRF, FFR, FFF, LRR, LRF, LFR, LFF, Phase |  |  |  |  |
| Control Panel Function |  |  |  |  |  |
| Autoset | Single-button, automatic setup of all channels for vertical, horizontal and trigger systems, with undo Autoset |  |  |  |  |
| Save Setup | 20set |  |  |  |  |
| Save Waveform | 24set |  |  |  |  |
| Display |  |  |  |  |  |
| TFT LCD Type | 7"TFT WVGA color display 800 horizontal $\times 480$ vertical pixels (WVGA) |  |  |  |  |
| Waveform Update Rate | 50,000 waveforms per second, maximum |  |  |  |  |
| Interface |  |  |  |  |  |
| USB Port | USB 2.0 High-speed host port X1, USB High-speed 2.0 device port X1 |  |  |  |  |
| Ethernet Port (LAN) | RJ-45 connector, 10/100Mbps with HP Auto-MDIX (4ch Model Only) |  |  |  |  |
| General |  |  |  |  |  |
| Dimensions | $384 \mathrm{mmX208mm} \mathrm{\times 127.3mm}$ |  |  |  |  |
| Weight | 2.8 kg |  |  |  |  |
| Power Source | $100 \mathrm{~V} \sim 240 \mathrm{~V}$ AC, $50 \mathrm{~Hz} \sim 60 \mathrm{~Hz}$, Auto selection, Power consumption: 30 Watts |  |  |  |  |

## 1GS/s Digital Storage Oscilloscopes

DCS-2074E
(1GS/s 4ch 70MHz)
DCS-2104E
(1GS/s 4ch 100MHz)
DCS-2204E
DCS-2072E
DCS-2102E DCS-2202E

## DCS-2000E Series

8" TFT WVGA color display
LabVIEW


USEB LAN

Specifications

|  | DCS-2072E | DCS-2074E | DCS-2102E | DCS-2104E | DCS-2202E | DCS-2204E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vertical |  |  |  |  |  |  |
| Channels | DCS-2xx4E:4ch, DCS-2XX2E:2ch+EXT |  |  |  |  |  |
| Bandwidth | DC $\sim 70 \mathrm{MHz}$ |  | DC $\sim 100 \mathrm{MHz}$ |  | DC ~ 200 MHz |  |
| Resolution | 8 bits: $1 \mathrm{mV} \sim 10 \mathrm{~V}$ |  |  |  |  |  |
| Input Impedance | $1 \mathrm{M} \Omega / / 16 \mathrm{pF}$ |  |  |  |  |  |
| DC Gain Accuracy | 1 mV : $\pm 5 \%$ full scale, $>2 \mathrm{mV}$ : $\pm 3 \%$ full scale |  |  |  |  |  |
| Waveform Signal Process | ,,$+- \times, \div$, FFT, FFTrms, User Defined Expression <br> FFT: Spectral magnitude. Set FFT Vertical Scale to Linear RMS or dBV RMS, and FFT Window to Rectangular, Hamming, Hanning, or Blackman-Harris |  |  |  |  |  |
| Trigger |  |  |  |  |  |  |
| Source | CH1, CH2, CH3*, CH4*, Line, EXT** <br> *four channel models only. **two channel models only. |  |  |  |  |  |
| Trigger Type | Edge, Pulse Width(Glitch), Video, Pulse Runt, Rise \& Fall(Slope), Timeout, Alternate, Event-Delay(1~65535 events), Time-Delay(Duration, 4nS~10S), Bus |  |  |  |  |  |
| Coupling | AC, DC, LF rej., Hf rej., Noise rej. |  |  |  |  |  |
| Sensitivity | 1div |  |  |  |  |  |
| External Trigger |  |  |  |  |  |  |
| Range | $\pm 15 \mathrm{~V}$ |  |  |  |  |  |
| Sensitivity | DC ~ 100MHz Approx. 100 mV 100MHz $\sim 200 \mathrm{MHz}$ Approx. 150 mV |  |  |  |  |  |
| Horizontal |  |  |  |  |  |  |
| Time base Range | $1 \mathrm{~ns} /$ div $\sim 100 \mathrm{~s} /$ div ( $1-2-5$ increments) ROLL: $100 \mathrm{~ms} /$ div $\sim 100 \mathrm{~s} /$ div |  |  |  |  |  |
| Pre-trigger | 10 div maximum |  |  |  |  |  |
| Post-trigger | 2,000,000 div maximum. |  |  |  |  |  |
| Real Time Sample Rate | 1GSa/s max. |  |  |  |  |  |
| Record Length | Max. 10Mpts |  |  |  |  |  |
| Acquisition Mode | Normal, Average, Peak Detect, Single |  |  |  |  |  |
| Peak Detection | 2 SS (typical) |  |  |  |  |  |
| Average | selectable from 2 to 256 |  |  |  |  |  |
| X-Y Mode |  |  |  |  |  |  |
| X-Axis Input | Channel 1; Channel 3* *four channel models only |  |  |  |  |  |
| Y-Axis Input | Channel 2; Channel 4* *four channel models only |  |  |  |  |  |
| Phase Shift | $\pm 3^{\circ}$ at 100 kHz |  |  |  |  |  |
| Cursors and Measurement |  |  |  |  |  |  |
| Cursors | Amplitude, Time, Gating available; Unit: Seconds(s), Hz(1/s), Phase(degree), Ration(\%) |  |  |  |  |  |
| Automatic Measurement | 36 sets: Pk-Pk, Max, Min, Amplitude, High, Low, Mean, Cycle Mean, RMS, Cycle RMS, Area, Cycle Area, ROVShoot, FOVShoot, RPREShoot, FPREShoot, Frequency, Period, RiseTime, FallTime, +Width, -Width, Duty Cycle, +Pulses, -Pulses, +Edges, -Edges, FRR, FRF, FFR, FFF, LRR, LRF, LFR, LFF, Phase |  |  |  |  |  |
| Control Panel Function |  |  |  |  |  |  |
| Autoset | Single-button, automatic setup of all channels for vertical, horizontal and trigger systems, with undo Autoset |  |  |  |  |  |
| Save Setup | 20set |  |  |  |  |  |
| Save Waveform | 24set |  |  |  |  |  |
| Display |  |  |  |  |  |  |
| TFT LCD Type | 8"TFT WVGA color display 800 horizontal $\times 480$ vertical pixels (WVGA) |  |  |  |  |  |
| Waveform Update Rate | 120,000 waveforms per second, maximum |  |  |  |  |  |
| Interface |  |  |  |  |  |  |
| USB Port | USB 2.0 High-speed host port X1, USB High-speed 2.0 device port X1 |  |  |  |  |  |
| Ethernet Port (LAN) | RJ-45 connector, 10/100Mbps with HP Auto-MDIX |  |  |  |  |  |
| General |  |  |  |  |  |  |
| Dimensions | $384 \mathrm{~mm} \times 208 \mathrm{~mm} \times 127.3 \mathrm{~mm}$ |  |  |  |  |  |
| Weight | Approx 2.8 kg |  |  |  |  |  |
| Power Source | 100V $\sim 240 \mathrm{~V}$ AC, 48Hz $\sim 63 \mathrm{~Hz}$, Auto selection, Power consumption 30Watts |  |  |  |  |  |

## 250MS/s Digital Storage Oscilloscopes

## DCS-4605

(250MS/s 2ch 50MHz)

- Automatic measurement functions

19 kinds of automatic measurement functions are available and five parameters can be displayed on the LCD display at same time.

- Automatic calculation functions

Versatile calculation (,,$+- x$, FFT ) functions are available.

- Built-in memory

The DCS-4605 can memories front panel setting and wave forms data by themselves using the memory.

- Clear display

The DCS-4605 have a broad outlook 5.6 inch color LCD display (TFT) and LED back light.

- Support voltage and current probes

Enable to set measuring scales of voltage / current (vertical axis) at
from $\times 0.1$ to $\times 2000$ (1-2-5 steps) according to probes.

- Various trigger functions

Edge trigger, Video trigger and Pulse trigger functions are available.

- An "educational mode" function can be used in order to prevent a student from using an automatic calculation function.
- Application software; FreeWave

The software enables to control the DCS-4605 by PC (through USB). It can display wave forms on PC display in real time and save wave forms data as not only still picture but also motion picture by PC.

- Go-NoGo function

Data logger function (with using USB flush drive)

Color TFT LCD
LabVIEW
( $\epsilon$


| USE |
| :---: |
| STANDARD |

## Specifications

| Model |  | DCS-4605 |
| :---: | :---: | :---: |
| Vertical axis |  |  |
| Sensibility |  | $2 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div ( $1-2-5$ steps) |
| Accuracy |  | $\pm(3 \% \times[$ eadout $]+0.1$ div $+1 \mathrm{mV})$ |
| Bandwidth(-3dB) | DC(AC)Coupling | DC (10Hz) to 50 MHz |
| Rise time |  | 7.Ons max |
| Input impedance |  | 1M $\pm \pm 2 \%$, Approx. 15 pF |
| Maximum input voltage |  | 300 V (DC + AC peak), Installation Category II |
| 20MHz bandwidth ( -3 dB ) function |  | Available |
| Trigger |  |  |
| Sources |  | CH1,CH2, LINE, EXT |
| Modes |  | AUTO, NORMAL, SINGLE, TV(Video), Edge, Pulse Width, Forcing |
| Coupling |  | AC, DC, Low/High Frequency rejection, Noise rejection |
| Trigger sensibility | 0.5 div ( $5 \mathrm{mV} \mathrm{min}$. ) | DC to 25 MHz |
| Ext. Trigger sensibility | 1.5 div ( 5 mV min.) | 25 MHz to 50 MHz |
| Horizontal axis |  |  |
| Range |  | $1 \mathrm{~ns} /$ div to $50 \mathrm{~s} / \mathrm{div}$, 1-2-5steps ( $50 \mathrm{~ms} /$ div to $50 \mathrm{~s} /$ div at Roll mode) |
| Modes |  | Main, Area magnification, Magnification, Roll, X-Y |
| Accuracy |  | $\pm 0.01 \%$ |
| Delay range | Pre-trigger | 10 div max. |
|  | Post-trigger | 1000div |
| Signal Acquisition System |  |  |
| Sample rate | Real-time | 250MS/s max. (1ch) |
|  | Equivalent | 25GSs/s max. |
| Vertical resolution |  | 8bits, 25levels/div |
| Record length |  | 4000 points |
| Acquisition modes |  | Normal, Peak Detect, Average |
| Peak detection |  | 10 ns ( $500 \mathrm{~ns} / \mathrm{div}$ to $50 \mathrm{~s} / \mathrm{div}$ ) |
| Average |  | 2, 4, 8, 16, 32, 64, 128, 256 |
| Cursors and Measurement |  |  |
| Automatic measurement functions | Vertical axis | Peak-to-peak, Max, Min, Amp, High, Low, Average, Rms Upper/Lower overshoot, Upper/Lower preshoot |
|  | Horizontal axis | Frequency, Period, Rise time, Fall time, Positive pulse width, Negative pulse width, Duty cycle |
| Cursors measurement |  | Voltage / Time difference between cursors ( $\mathrm{V}, \Delta \mathrm{T}, 1 / \Delta \mathrm{T}$ ) |
| Frequency counter |  | Resolution : six digits, Accuracy : $\pm 2 \%$ (cannot measure below two Hz ) |
| Interfaces |  |  |
| USB Host /USB Slave* |  | USB Flash Drive Max 32GB / USB 2.0 Full speed(USB-CDC) *Not support via USB3.0 or above |
| General |  |  |
| Power requirements |  | 100 V to 240 V AC, 47 Hz to 63 Hz |
| Power consumption |  | 18Watts, 40VA max |
| Dimensions |  | $341.5(\mathrm{~W}) \times 162.3$ (H) $\times 159$ (D) mm |
| Weight |  | Approx. 2.5 kg |
| Accessories |  | Probe $\times 2$, AC power cable, CD-ROM (instruction manual, APP software: FreeWave) |

## Electrical Safety Testers

STW-9901 (AC 5oova)/STW-9801 (AC 200VA) Withstanding Voltage Tester
STW-9902 (AC 500VA)/STW-9802 (AC 200VA) AC/DC Withstanding Voltage Tester
STW-9903 (AC 5oova)/STW-9803 (AC 200VA) AC/DC Withstanding Voltage/Insulation Resistance Tester
STW-9904 (ac 5ova)
AC/DC Withstanding Voltage/Insulation Resistance/Ground Bond Tester

500VA and AC Test Capacity
$240 \times 64$ Ice Blue Dot Matrix LCD

- Manual/Auto Mode
- Function Key for Quick Selecting
- High Intensity Flash for Caution \& Status Indication
- Safety Interlock Function

Zero Crossing Turn-on Operation

- Controllable Ramp-up Time


## Specifications

| Environment |  |  |
| :---: | :---: | :---: |
| Range | Temperature | Humidity |
| Warranty | $15^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}$ | 570\% (No condensation) |
| Operation | $0^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$ | <70\% (No condensation) |
| Storage | $-10^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ | <85\% (No condensation) |
| Installation Location | Indoors at an amplitude of up to 2000 m . |  |
| AC Withstanding Voltage | STW-9801/9802/9803 | STW-9901/9902/9903/9904 |
| Output Voltage Range | $0.100 \mathrm{kV} \sim 5.000 \mathrm{kV}$ |  |
| Output Voltage Resolution | 2V/step |  |
| Output Voltage Accuracy | $\pm$ ( $1 \%$ of setting +5 V ) with no load |  |
| Maximum Rated Load(Table1) | $200 \mathrm{VA}(5 \mathrm{kV} / 100 \mathrm{~mA})$ | $500 \mathrm{VA}(5 \mathrm{kV} / 100 \mathrm{~mA})$ |
| Maximum Rated Current | $\begin{aligned} & 10 \mathrm{~mA}(0.1 \mathrm{kV} \leq \mathrm{V} \leq 0.5 \mathrm{kV}) \\ & 40 \mathrm{~mA}(0.5 \mathrm{kV}<\mathrm{V} \leq 5 \mathrm{kV}) \\ & \hline \end{aligned}$ | $10 \mathrm{~mA}(0.1 \mathrm{kV} \leq \mathrm{V} \leq 0.5 \mathrm{kV})$ $100 \mathrm{~mA}(0.5 \mathrm{kV}<\mathrm{V} \leq 5 \mathrm{kV})$ |
| Output Voltage Waveform | Sine wave |  |
| Frequency | $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ |  |
| Voltage Regulation | $\pm 1 \%+5 \mathrm{~V}$ [Maximum rated load $\rightarrow$ no load] |  |
| Voltmeter Accuracy | $\pm$ ( $1 \%$ of reading +5 V ) |  |
| Current Measurement Range | $0.001 \mathrm{~mA} \sim 40.0 \mathrm{~mA}$ | $0.001 \mathrm{~mA} \sim 100.0 \mathrm{~mA}$ |
| Current Best Resolution | $0.001 \mathrm{~mA}(0.001 \mathrm{~mA} \sim 0.999 \mathrm{~mA})$ <br> $0.01 \mathrm{~mA}(01.00 \mathrm{~mA} \sim 09.99 \mathrm{~mA})$ <br> $0.1 \mathrm{~mA}(010.0 \sim 040.0 \mathrm{~mA})$ | $0.001 \mathrm{~mA}(0.001 \mathrm{~mA} \sim 1.100 \mathrm{~mA})$ <br> $0.01 \mathrm{~mA}(01.11 \mathrm{~mA} \sim 11.00 \mathrm{~mA})$ <br> $0.1 \mathrm{~mA}(011.1 \sim 100.0 \mathrm{~mA})$ |
| Current Measurement Accuracy | $\pm(1.5 \%$ of rdg +30 counts $) \mathrm{HI}$ SET $<1.00 \mathrm{~mA}$ <br> $\pm$ ( $1.5 \%$ of rdg +3 counts) HI SET $\geq 1.00 \mathrm{~mA}$ | $\pm$ ( $1.5 \%$ of rdg +30 counts) HI SET<1.11mA <br> $\pm(1.5 \%$ of rdg +3 counts) HI SET $\geq 1.11 \mathrm{~mA}$ |
| Window Comparator Method | Yes |  |
| ARC DETECT | Yes |  |
| Rise-time Control Function | Yes |  |
| RAMP (Ramp Time) | 0.1s~999.9s |  |
| TIMER (Test Time) | OFF*, 0.5s~999.9s |  |
| GND | ON/OFF |  |
| * The timer can only be turned off under special MANU mode (MANU=***-000) |  |  |
| DC Withstanding Voltage | STW-9802/9803 | STW-9902/9803/9804 |
| Output Voltage Range | $0.100 \mathrm{kV} \sim 6.000 \mathrm{kV}$ |  |
| Output Voltage Resolution | 2 V |  |
| Output Voltage Accuracy | $\pm$ ( $1 \%$ of setting +5 V ) with no load |  |
| Maximum Rated Load (Table1) | $50 \mathrm{~W}(5 \mathrm{kV} / 10 \mathrm{~mA})$ | $100 \mathrm{~W}(5 \mathrm{kV} / 20 \mathrm{~mA})$ |
| Maximum Rated Current | $2 \mathrm{~mA}(0.1 \mathrm{kV} \leq \mathrm{V} \leq 0.5 \mathrm{kV})$ <br> $10 \mathrm{~mA}(0.5 \mathrm{kV}<\mathrm{V} \leq 6 \mathrm{kV})$ | $2 \mathrm{~mA}(0.1 \mathrm{kV} \leq \mathrm{V} \leq 0.5 \mathrm{kV})$ <br> $20 \mathrm{~mA}(0.5 \mathrm{kV}<\mathrm{V} \leq 6 \mathrm{kV})$ |
| Voltmeter Accuracy | $\pm$ ( $1 \%$ of reading +5 V ) |  |
| Voltage Regulation | $\pm 1 \%+5 \mathrm{~V}$ [Maximum rated load $\rightarrow$ no load] |  |
| Current Measurement Range | $0.001 \mathrm{~mA} \sim 010.0 \mathrm{~mA}$ | $0.001 \mathrm{~mA} \sim 020.0 \mathrm{~mA}$ |
| Current Best Resolution | $0.001 \mathrm{~mA}(0.001 \mathrm{~mA} \sim 0.999 \mathrm{~mA})$ <br> $0.01 \mathrm{~mA}(01.00 \mathrm{~mA} \sim 9.99 \mathrm{~mA})$ <br> $0.1 \mathrm{~mA}(010.0 \mathrm{~mA})$ | $0.001 \mathrm{~mA}(0.001 \mathrm{~mA} \sim 1.100 \mathrm{~mA})$ <br> $0.01 \mathrm{~mA}(01.11 \mathrm{~mA} \sim 11.00 \mathrm{~mA})$ <br> $0.1 \mathrm{~mA}(011.0 \mathrm{~mA} \sim 020.0 \mathrm{~mA})$ |
| Current Measurement Accuracy | $\pm(1.5 \%$ of rdg +30 counts) HI SET $<1.00 \mathrm{~mA}$ <br> $\pm(1.5 \%$ of rdg +3 counts) HI SET $\geq 1.00 \mathrm{~mA}$ | $\pm(1.5 \%$ of rdg +30 counts $)$ HI SET $<1.11 \mathrm{~mA}$ <br> $\pm(1.5 \%$ of rdg +3 counts $)$ HI SET $\geq 1.11 \mathrm{~mA}$ |
| Window Comparator Method | Yes |  |
| ARC DETECT | Yes |  |
| Rise-time Control Function | Yes |  |
| RAMP (Ramp Time) | 0.1s~999.9s |  |
| TIMER (Test Time) | OFF*, 0.5s~999.9s |  |
| GND | ON/OFF |  |
| * The timer can only be turned off under special MANU mode (MANU=***-000) |  |  |

## STW-9900/9800 Series (stock only)

500VA and 200VA AC Test Capacity
Lem



- True RMS Current Measurement
- High Resolution : $1 \mu \mathrm{~A}$ for Measuring Current, 2 V for Setting Voltage

PWM Switching Amplifier to Enhance the Power Efficiency and Reliable Testing

- Max. 100 Memory Block for Test Condition (Step) Setting. And Each Step can be Named Individually
- Remote Terminal on the Front Panel for"Start"and"Stop" Control by External
- Interface: RS-232C, USB Devise, Signal I/O and GP-IB (Option: OPT.1)

| Insulation Resistance Test | STW-9803/9903/9904 |  |  |
| :---: | :---: | :---: | :---: |
| Output Voltage | 50V~1000V |  |  |
| Output Voltage Resolution | 50 V |  |  |
| Output Voltage Accuracy | ( $1 \%$ of setting +5 V ) with no load |  |  |
| Resistance Measurement Range (STW-9803) | $1 \mathrm{M} \Omega \sim 9500 \mathrm{M} \Omega$ |  |  |
|  | Test Voltage | Measurement Range | Accuracy |
|  | $50 \mathrm{~V} \leq \mathrm{V} \leq 450 \mathrm{~V}$ | $\begin{aligned} & \hline 0.001 \mathrm{G} \Omega \sim 0.050 \mathrm{G} \Omega \\ & 0.051 \mathrm{G} \Omega \sim 2.000 \mathrm{G} \Omega \\ & \hline \end{aligned}$ | $\pm(5 \%$ of reading +1 count) <br> $\pm(10 \%$ of reading +1 count $)$ |
|  | $500 \mathrm{~V} \leq \mathrm{V} \leq 1000 \mathrm{~V}$ | $\begin{aligned} & 0.001 \mathrm{G} \Omega \sim 0.500 \mathrm{G} \Omega \\ & 0.501 \mathrm{G} \Omega \sim 9.500 \mathrm{G} \Omega \end{aligned}$ | $\pm(5 \%$ of reading +1 count) <br> $\pm(10 \%$ of reading +1 count $)$ |
| Resistance Measurement Range (STW-9903/ 9904) | $1 \mathrm{M} \Omega \sim 50 \mathrm{G} \Omega$ |  |  |
|  | Test Voltage | Measurement Range | Accuracy |
|  | $50 \mathrm{~V} \leq \mathrm{V} \leq 450 \mathrm{~V}$ | $\begin{aligned} & 0.001 \mathrm{G} \Omega \sim 0.050 \mathrm{G} \Omega \\ & 0.051 \mathrm{G} \Omega \sim 2.000 \mathrm{G} \Omega \end{aligned}$ | $\begin{aligned} & \pm(5 \% \text { of reading }+1 \text { count }) \\ & \pm(10 \% \text { of reading }+1 \text { count }) \end{aligned}$ |
|  | $500 \mathrm{~V} \leq \mathrm{V} \leq 1000 \mathrm{~V}$ | $0.001 \mathrm{G} \Omega \sim 0.500 \mathrm{G} \Omega$ <br> $0.501 \mathrm{G} \Omega \sim 9.999 \mathrm{G} \Omega$ <br> $10.00 \mathrm{G} \Omega \sim 50.00 \mathrm{G} \Omega$ | $\pm(5 \%$ of reading +1 count) <br> $\pm(10 \%$ of reading +1 count) <br> $\pm(20 \%$ of reading +1 count) |
| Output Impedance | $600 \mathrm{k} \Omega$ |  |  |
| Window Comparator Method | Yes |  |  |
| Rise-time Control Function | Yes |  |  |
| RAMP (Ramp Time) | 0.1s~999.9s |  |  |
| TIMER (Test Time) | 1s~999.9s |  |  |
| GND | OFF |  |  |
| Ground Bond Test | STW-9904 |  |  |
| Output Current Range | 03.00A~32.00A |  |  |
| Output Current Accuracy | $\begin{aligned} & \pm(1 \% \text { of reading }+0.2 \mathrm{~A}) \text { when } 3 \mathrm{~A} \leq 1 \leq 8 \mathrm{~A} \\ & \pm(1 \% \text { of reading }+0.05 \mathrm{~A}) \text { when } 8 \mathrm{~A}<1 \leq 32 \mathrm{~A} \end{aligned}$ |  |  |
| Output Current Resolution | 0.01A |  |  |
| Frequency | $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ selectable |  |  |
| Ohmmeter Measurement Accuracy | $\pm$ (1\% of reading $+2 \mathrm{~m} \Omega$ ) |  |  |
| Ohmmeter Measurement Range | $10 \mathrm{~m} \Omega \sim 650.0 \mathrm{~m} \Omega$ (depending on output current) |  |  |
| Test Voltage | Max. 6V(AC)open - circuit |  |  |
| Ohmmeter Measurement Resolution | $0.1 \mathrm{~m} \Omega$ |  |  |
| Windows Comparator Method | Yes |  |  |
| TIMER (Test Time) | 0.5s~999.9s |  |  |
| GND | OFF |  |  |
| Interface |  |  |  |
| REMOTE (Remote terminal) | Yes |  |  |
| SIGNAL IO | Yes |  |  |
| RS-232C | Yes |  |  |
| USB (Device) | Yes |  |  |
| GPIB | Yes (OPTION) |  |  |
| General |  |  |  |
| DISPLAY | $240 \times 64$ dot matrix LED back light LCD |  |  |
| MEMORY | AUTO/MANU mode 100 memory blocks total |  |  |
| POWER SOURCE | AC100V/120V/220V/230V $\pm 10 \% 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ |  |  |
| ACCESSORIES | Power cord x1,User Manual x1 (CD),GHT-114×1(GTL-115x1 for STW-9904) (GTL-115x1 for STW-9904) |  |  |
| DIMENSIONS \& WEIGHT | STW-9801/9802/9803:Approx. 322(W) x 148(H) x 452(D)mm(Max) 24kg(Max) STW-9901/9902/9903:Approx. 322(W) $\times 148$ (H) $\times 482$ (D)mm(Max) $24 \mathrm{~kg}(\mathrm{Max})$ STW-9904: Approx. 322(W) x 148(H) $\times 594$ (D) mm (Max.) $27 \mathrm{~kg}($ Max) |  |  |

## Multiplex Scanner Box for STW-9900/9800 Series

STW-S 1
8CH High Voltage Scanner Box
STW-S2
6 CH High Voltage and 2CH Ground Bond Scanner Box

This scanner box handles withstanding voltage $5 \mathrm{kVac} / 6 \mathrm{kVdc}$ and insulation resistance voltage 1 kVdc as well as the ground bond current 40Aac supplied from safety tester proper. Each scanner box extends the output to 8 channels, a potential $\mathrm{HI}, \mathrm{LO}$ or X can be set for each channel and AC/DC withstanding voltage, insulation resistance or ground bond test can be conducted depending on the model of scanner box.

A maximum 4 scanner boxes can be connected to one STW-9900/9800 series, it allows the output channel can be extended up to 32 channels. It is particularly well suited for multi-point safety testing as well for volume testing on factory floors.

| Specifications |
| :--- |
| Model STW-S1 STW-S2 <br> High Voltage Rating $5 \mathrm{kV} \mathrm{AC} \mathrm{/} 6 \mathrm{kV} \mathrm{DC}$ $5 \mathrm{kV} \mathrm{AC} \mathrm{/} \mathrm{6kV} \mathrm{DC}$ <br> High Current Rating --- 40 AAC <br> Number of H.V. Channels 8 6 <br> Number of G. Channels --- 2 <br> Maximum Number of Scanners 4 Scanners (up to 32 channels)  <br> Interface RS-232C for connection between tester or scanner box  <br> Power Source AC $100-240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz} \mathrm{50VA} \mathrm{MAX}$  <br> Dimensions   <br> $(W \times$ H $\times$ D)mm $330 \times 101 \times 399$ $330 \times 101 \times 413$ <br> Weight Approx. 5.5 kg  |

## Multiplex Scanner Box

500VA AC Test Capacity


RS-232G

- Multi-channel Outputs for Withstanding Voltage, Insulation Resistance, Ground Bond Tests
- High-intensity LED for Channel, Status \& Judgment Indications
- Front \& Rear Input Connector Design is Suitable for the STW-9900/9800 Series

| Accessories | Model | STW-S1 | STW-S2 |
| :--- | :---: | :---: | :---: |
| Quick Start Guide |  | x 1 | x 1 |
| Power Cord |  | x 1 | x 1 |
| CD (Complete user manual) |  | x 1 | x 1 |
| H.V.Wiring Lead | GHT-108 | x 1 | x 1 |
| G.B Wiring Lead | GHT-109 |  | x 1 |
| Test Lead (Red) | GHT-116R | x 8 | x 6 |
| Test Lead (Black) | GHT-116B | x 1 | x 1 |
| Test lead for GB H (Red) | GTL-116R |  | x 2 |
| Test lead for GB L (Black) | GTL-116B |  | x 1 |
| Communication Cable | GTL-235 | x 1 | x 1 |

## Color Pattern Generators

## CG-971

CG-971<br>Color pattern Generator<br>-Analog video signal/Audio signal output<br>Conformity with NTSC,PAL,PAL-M and TNSC-4.43<br>Selectable sync level<br>Available for various setting and output patterns by system file<br>- Each staircase level in step pattern settable by voltage<br>Natural image and Monoscope pattern output<br>Max. 24 pattern installation<br>Auto sequence mode<br>ORS-232C, and Digital IF (TTL) for remote control<br>Half rack size of 19 inch EIA 2 U



Specifications


Examples of signal patterns


## 2ch Arbitrary Function Generator

FGX-2220

## FGX-2220

## 2ch Arbitrary Function Generator

- DDS Function Generator series
$1 \mu \mathrm{~Hz}$ high frequency resolution maintained at full range
20ppm frequency stability
- Arbitrary Waveform Capability
- Sine, Square, Ramp, Pulse, Noise, standard waveforms
- Internal and external LIN/LOG sweep with marker output
- Int/Ext AM, FM, PM, FSK, SUM modulation
- Burst function with internal and external triggers without marker output

Store/recall 10 groups of setting memories
Output overload protection

- USB interface as standard
3.5 inch Color TFT LCD ( $320 \times 240$ ) graphical user interface

Specifications


| External Modulation Input |  |  |
| :---: | :---: | :---: |
| Type | For AM, FM, PM, SUM |  |
| Voltage Range | $\pm 5 \mathrm{~V}$ full scale |  |
| Input Impedance | $10 \mathrm{k} \Omega$ |  |
| Frequency | DC to 20kHz |  |
| Trigger Output |  |  |
| Type | For Burst, Sweep, Arb |  |
| Level | TTL Compatible into $50 \Omega$ |  |
| Pulse Width | >450ns |  |
| Maximum Rate | 1 MHz |  |
| Fan-out | $\geq 4$ TTL Load |  |
| Impedance | $50 \Omega$ Typical |  |
| Dual Channel Function |  |  |
| Phase | $-180^{\circ}$ to $180^{\circ}$, Synchronize phase | $-180^{\circ}$ to $180^{\circ}$, Synchronize phase |
| Track | $\mathrm{CH} 2=\mathrm{CH} 1$ | $\mathrm{CH} 1=\mathrm{CH} 2$ |
| Coupling | Frequency(Ratio or Difference) Amplitude \& DC Offset | Frequency(Ratio or Difference) Amplitude \& DC Offset |
| Burst |  |  |
| Waveforms | Sine, Square, Ramp | Sine, Square, Ramp |
| Frequency | 1 uHz to 20 MHz | 1 uHz to 20MHz |
| Burst Count | 1 to 65535 cycles or Infinite | 1 to 65535 cycles or Infinite |
| Start/Stop Phase | $-360^{\circ}$ to $+360^{\circ}$ | $-360^{\circ}$ to $+360^{\circ}$ |
| Internal Period | $1 \mathrm{~ms} \mathrm{to} \mathrm{500s}$ | 1 ms to 500s |
| Gate Source | External Trigger | External Trigger |
| Trigger Source | Single, External or Internal Rate | Single, External or Internal Rate |
| Trigger Delay |  |  |
| N-Cycle, Infinite | Os to 655350ns | Os to 655350ns |
| Frequency Counter |  |  |
| Range | 5 Hz to 150 MHz |  |
| Accuracy | Time Base accuracy $\pm 1$ count |  |
| Time Base | $\pm 20 \mathrm{ppm}\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ after 30 minutes warm up |  |
| Resolution | The maximum resolution is: 100 nHz for $1 \mathrm{~Hz}, 0.1 \mathrm{~Hz}$ for 100 MHz . |  |
| Input Impedance | $1 \mathrm{k} / 1 \mathrm{pf}$ |  |
| Sensitivity | 35 mVrms to 30 Vrms ( 5 Hz to 150 MHz ) |  |
| Save/Recall |  |  |
|  | 10 Groups of Setting Memories |  |
| Interface |  |  |
|  | USB Host : USB Flash Drive, USB Device : USB-CDC Class |  |
| Display |  |  |
|  | 3.5"TFT LCD |  |
| General Specifications |  |  |
| Power Source | AC100 to 240 V , 50 to 60 Hz |  |
| Power Consumption | 25 Watts (Max) |  |
| Operating Environment |  |  |
| Temperature to satisfy the specification : 18 to $28^{\circ} \mathrm{C}$, Operating temperature : 0 to $40^{\circ} \mathrm{C}$, Relative Humidity : $<8$ 0 to $40^{\circ} \mathrm{C}$, Installation category : CAT II |  |  |
| Operating Altitude | 2000 Meters |  |
| Storage Temperature | -10 to $70^{\circ} \mathrm{C}$, Humidity: $\leq 70 \%$ |  |
| Dimensions | 266(W) $\times 107(\mathrm{H}) \times 293$ (D) mm |  |
| Weight | Approx. 2.5 kg |  |
| Accessories | GTL-101×2, Quick Start Guide $\times 1$, CD (user manual + software) $\times 1$, Power cord $\times 1$ |  |

## Arbitrary Function Generators

## FGX-2005 <br> 5MHz Arbitrary Function Generator

$0.1 \mathrm{~Hz} \sim 5 \mathrm{MHz}$ with in 0.1 Hz Resolution

- Sine, Square, Ramp, Noise and Arbitrary Waveform
- 20MSa/s Sampling Rate, 10 bit Vertical Resolution and 4k point Memory for Arbitrary Waveform
- 1\%~99\% Adjustable Duty Cycle for Square Waveform
- Waveform Parameter Setting Through Numeric Keypad Entry \& Knob Selection
- Amplitude, DC Offset and Other Key Setting Information Shown on the 3.5" LCD Screen Simultaneously


## Specifications

| Waveforms |  |  |
| :---: | :---: | :---: |
| Type |  | Sine, Square, Ramp, Noise, ARB |
| Arbitrary Functions |  |  |
|  | Sample Rate | $20 \mathrm{MSa} / \mathrm{s}$ |
|  | Repetition Rate | 10 MHz |
|  | Waveform Length | 4k points |
|  | Amplitude Resolution | 10 bits |
|  | Non-Volatile Memory | 4k points |
| Frequency Characteristics |  |  |
| Range | Sine | $0.1 \mathrm{~Hz} \sim 5 \mathrm{MHz}$ |
|  | Square | $0.1 \mathrm{~Hz} \sim 5 \mathrm{MHz}$ |
|  | Triangle, Ramp | 1 MHz |
| Resolution |  | 0.1 Hz |
| Accuracy | Stability | $\pm 20 \mathrm{ppm}$ |
|  | Aging | $\pm 1 \mathrm{ppm}$, per 1 year |
|  | Tolerance | $\leq 1 \mathrm{mHz}$ |
| Output Characteristios |  |  |
| Amplitude | Range | 1 mVpp to 10 Vpp (into $50 \Omega$ ) <br> 2 mVpp to 20 Vpp (open-circuit) |
|  | Accuracy | $\pm 2 \%$ of setting $\pm 1 \mathrm{mVpp}$ (at 1 kHz ) |
|  | Resolution | 1 mV or 3 digits |
|  | Flatness | $\begin{aligned} & \pm 1 \%(0.1 \mathrm{~dB}) \leq 100 \mathrm{kHz} \\ & \pm 3 \%(0.3 \mathrm{~dB}) \leq 5 \mathrm{MHz} \\ & \pm 5 \%(0.4 \mathrm{~dB}) \leq 12 \mathrm{MHz} \\ & \text { (sine wave relative to } 1 \mathrm{kHz} \text { ) } \end{aligned}$ |
|  | Units | Vpp, Vrms, dBm |
| Offset | Range | $\pm 5 \mathrm{Vpk}$ ac +dc (into $50 \Omega$ ) <br> $\pm 10 \mathrm{Vpk}$ ac +dc (Open circuit) |
|  | Accuracy | $2 \%$ of setting $+10 \mathrm{mV}+0.5 \%$ of amplitude |
| Waveform Output | Impedance | $50 \Omega$ typical (fixed) <br> $>300 \mathrm{k} \Omega$ (output disabled) |
|  | Attenuator | - |
|  | Protection | Short-circuit protected Overload relay automatically disables main output |
| SYNC Output | Level | TTL-compatible into >1k $\Omega$ |
|  | Impedance | $50 \Omega$ nominal |
|  | Fan Out | - |
|  | Rise of Fall Time | $\leq 25$ ns |
| Sine wave Characteristics |  |  |
|  | Harmonic distortion | $\begin{array}{\|lll} -55 \mathrm{dBc} & \mathrm{DC} \quad \sim 200 \mathrm{kHz}, \mathrm{Ampl}>0.1 \mathrm{Vpp} \\ -50 \mathrm{dBc} & 200 \mathrm{kHz} \sim 1 \mathrm{MHz}, \mathrm{Ampl}>0.1 \mathrm{Vpp} \\ -35 \mathrm{dBc} & 1 \mathrm{MHz} \sim 5 \mathrm{MHz}, \mathrm{Ampl}>0.1 \mathrm{Vpp} \\ -30 \mathrm{dBc} & 5 \mathrm{MHz} \sim 12 \mathrm{MHz}, \mathrm{Ampl}>0.1 \mathrm{Vpp} \\ \hline \end{array}$ |
| Square wave Characteristics |  |  |
|  | Rise/Fall Time | $\leq 25 \mathrm{~ns}$ at maximum output.(into $50 \Omega$ load) |
|  | Overshoot | < $5 \%$ |
|  | Asymmetry | $1 \%$ of period +1 ns |
|  | Variable duty Cycle | $\begin{aligned} & 1.0 \% \text { to } 99.0 \% \leq 100 \mathrm{kHz} \\ & 20.0 \% \text { to } 80.0 \% \leq 5 \mathrm{MHz} \\ & 40.0 \% \text { to } 60.0 \% \leq 10 \mathrm{MHz} \\ & 50 \% \leq 12 \mathrm{MHz} \end{aligned}$ |
| Ramp Characteristics |  |  |
|  | Linearity | < $0.1 \%$ of peak output |
|  | Variable Symmetry | 0\% to 100\% (0.1\% Resolution) |

## FGX-2005

Arbitrary Function Generator
LabVIEW C

$\xrightarrow{\mathbf{U S B}}$

- USB Device Interface for Remote Control and Waveform Editing
- PC Arbitrary Waveform Editing Software

| Other |  |  |
| :---: | :---: | :---: |
| Save / Recall |  | 10 Groups of Setting Memories (Locations 0~9 only for instrument state, Locations 10~19 only for ARB data) |
| Interface |  | USB (CDC Device) |
| Display |  | LCD |
| General Specifications |  |  |
|  | Power Source | AC100~240V, 50~60Hz |
|  | Power Consumption | 25 VA (Max) |
|  | Operating Environment | Temperature to satisfy the specification : $18 \sim 28^{\circ} \mathrm{C}$ Operating temperature : $0 \sim 40^{\circ} \mathrm{C}$ <br> Relative Humidity: $\leq 80 \%, 0 \sim 40^{\circ} \mathrm{C}$ $\leq 70 \%, 35 \sim 40^{\circ} \mathrm{C}$ <br> Installation category : CAT II |
|  | Operating Altitude | 2000 Meters |
|  | Storage Temperature | $-10 \sim 70^{\circ} \mathrm{C}$, Humidity: $\leq 80 \%$ |
|  | Dimensions (WxHxD) | 266(W) $\times 107(\mathrm{H}) \times 293$ (D) mm |
|  | Weight | Approx. 2.5 kg |
|  | Accessories | BNC-Alligator cable $\times 1$ |
|  |  | $\text { CD (user manual + software) } \times 1$ <br> Power cord×1 |

## 50MHz Arbitrary Function Generator

## FGX-295

50MHz Arbitrary Function Generator

Output range up to 50 MHz for sine waveform and 25 MHz for square waveform.

- 5 standard waveform: Sine, Square, Ramp, Pulse and Noise

Arbitrary waveform function with 14 bits, 125 Mega sampling per sec.

- Flexible frequency sweep, burst waveform and modulation (AM, FM, PM, FSK and PWM) function.
- Standard equipment of USB, LAN and GP-IB

Standard equipment of a useful PC application

- Memorizes up to 4kinds of an arbitrary waveform with 256 points.

Specifications

| Output waveform |  |  |  |
| :---: | :---: | :---: | :---: |
| Standard | Sine, Square, Ramp, Triangle, Pulse, Noise, DC |  |  |
| Incorporated arbitrary | Exponential rise, Exponential fall, Reverse ramp, Sinc, Heart Pulse |  |  |
| Waveform characteristics |  |  |  |
| Sine | Frequency | $1 \mu \mathrm{~Hz}$ to 50 MHz |  |
| Square | Frequency | $1 \mu \mathrm{~Hz}$ to 25 MHz |  |
| Ramp, Triangle | Frequency | $1 \mu \mathrm{~Hz}$ to 200 kHz |  |
| Pulse | Frequency | $500 \mu \mathrm{~Hz}$ to 10 MHz |  |
| Noise | Bandwidth | approx. 20 MHz |  |
| Arbitrary | Frequency | $1 \mu \mathrm{~Hz}$ to 10 MHz |  |
|  | Waveform length | 2 K to 256 K points |  |
|  | Amplitude resolution | 14bits (including marks) |  |
|  | Sampling rate | 125MS/s |  |
| Common characteristics |  |  |  |
| Frequency | Resolution | $1 \mu \mathrm{~Hz}$ |  |
| Amplitude | Range | $50 \Omega$ termination | 10 mV (p-p) to 10 V (p-p) |
| DC offset, DC | Range (peak AC+DC) | $50 \Omega$ termination | $\pm 5 \mathrm{~V}$ (p-p) |
| Main output | Impedance | Approx. $50 \Omega$ |  |
| Sync output | Level | TTL (Impedance : approx. 50, |  |
| Internal frequency standard | Accuracy | $\pm 10 \mathrm{ppm}$ (90days) | $\pm 20 \mathrm{ppm}$ (1year) |
| External frequency standard (input) | Lock range | $10 \mathrm{MHz} \pm 500 \mathrm{~Hz}$ |  |
|  | Level | 100 mV (p-p) to 5 V (p-p) |  |
| External frequency standard (output) | Lock range | 10 MHz |  |
|  | Level | approx. 632 mV (p-p) (0dBm) |  |
| Phase offset | Range | -360 degree to +360 degree |  |
|  | Resolution | 0.001 degree |  |
| Modulation |  |  |  |
|  | Internal modulation | Sine, Square, Ramp, Triangle, Noise, Arbitrary |  |
|  | Frequency(Internal) | 2 mHz to 20 kHz |  |
| AM | Modulation | 0.0\% to 120.0\% |  |
| FM | Deviation | DC to 25 MHz |  |
| PM | Deviation | 0.0 degree to 360 degree |  |
| PWM | Deviation | 0.0 degree to 360 degree |  |
| FSK | Internal modulation | duty cycle $50 \%$ square |  |
|  | Frequency(Internal) | 2 mHz to 100 kHz |  |
| External modulation input | Voltage range | $\pm 5 \mathrm{~V}$ full scale |  |
|  | Input resistance | approx. 8.7k $\Omega$ |  |
|  | Bandwidth | DC to 20kHz |  |
| Sweep | Waveform | Sine, Square, Ramp, Arbitrary |  |
|  | Sweep time | 1 ms to 500 second |  |
| Burst | Waveform | Sine, Square, Ramp, Triangle, Noise, Arbitrary |  |
|  | Start/Stop, Phase | -360 degree to +360 degree |  |
|  | Internal period | $1 \mu$ to 500 second |  |

FGX-295

## 50 MHz Arbitrary Function Generator

$$
\operatorname{men}(\epsilon
$$



Limited sales area:China, Korea, Singapore, Malaysia, Thailand, Vietnam

| Trigger   <br> Trigger input Level TTL compatible <br> Trigger output Level TTL compatible, Termination more than $1 \mathrm{k} \Omega$ <br>  Max. speed 1 MHz <br> Parallel output Frequency $1 \mu \mathrm{~Hz}$ to 50 MHz <br> Clock output Level TTL compatible, Termination more than $2 \mathrm{k} \Omega$ <br> Data output Voltage range 100 V to $240 \mathrm{~V}(50 \mathrm{~Hz} / 60 \mathrm{~Hz}) 100 \mathrm{~V}$ to $120 \mathrm{~V}(400 \mathrm{~Hz})$ <br> General specification Power consumption max. 80VA <br> Power source Spec guaranty <br> temperature range 18 degree. To 28 degree. <br> (Humidity less than $80 \%$, no condensation $)$ <br>  Interface USB (Type-B), GP-IB, LAN <br> Others Dimensions $224(\mathrm{~W}) \times 107(\mathrm{H}) \times 380(\mathrm{D}) \mathrm{mm}$ <br>  Weight Approx. 3.6 kg |  |  |
| :--- | :---: | :---: |

## - Application Software "WAVEPATT"

This application software enables to create on the PC, an arbitrary waveform that outputs from FGX-295. The created waveform is to be transmitted to FGX-295 through GP-IB, LAN or USB.


## Digital Multimeters

DL-1060VG
Digital Multimeter
(With USB/GP-IB function)
OSEB

## DL-1060VR

 Digital Multimeter(With USB/RS-232C function) USEB

$D L=1060$ (With USB function)<br>Digital Multimeter<br>SAEB

- High-speed sampling rate ( $50000 \mathrm{Rdgs} / \mathrm{sec}$. at NPLC 0.001)
- Direct Thermocouple Measurement (Built-In Cold Junction to improve Accuracy)
- Dual Measurement \& Dual Display (Including Thermocouple Measurement)
- Capacitance Measurement
- Several Measurements \& Mathematic Functions
- Wide Range Current Measurement (Up to 10A)


## DL-1060 Series

Dual Display
Lume C


Limited sales area:China, Korea, Singapore, Malaysia, Thailand, Vietnam

DCV Accuracy (0.012\% in 1year)

- High Sensitivity (DCV : $0.1 \mu \mathrm{~V}$ \& Resistance : $100 \mu \Omega$ )
- Plug \& Play Interface : Built-in USB (USBTMC)
- High Storage Memory (Up to 2000 Readings)
- Free Application Software


## Specifications

DC Characteristic Accuracy $\pm$ (\% of reading * \% pf range) *1

| Function | Range *2 | Resolution | Input resistance | 1 Year ( $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| DC Voltage | 100.0000 mV | $0.1 \mu \mathrm{~V}$ | $10 \mathrm{M} \Omega$ | $0.008+0.0045$ |
|  | 1.000000 V | $1 \mu \mathrm{~V}$ | $10 \mathrm{M} \Omega$ | $0.009+0.001$ |
|  | 10.00000 V | $10 \mu \mathrm{~V}$ | $10 \mathrm{M} \Omega$ | $0.012+0.002$ |
|  | 100.0000 V | $100 \mu \mathrm{~V}$ | $10 \mathrm{M} \Omega$ | $0.012+0.002$ |
|  | 1000.000 V | 1 mV | $10 \mathrm{M} \Omega$ | $0.02+0.003$ |
| Function | Range *2 | Resolution | Shunt resistance | 1 Year ( $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ) |
| DC Current | 10.00000 mA | 10 nA | $5.1 \Omega$ | $0.05+0.005$ |
|  | 100.0000 mA | 100 nA | $5.1 \Omega$ | $0.05+0.01$ |
|  | 1.000000 A | $1 \mu \mathrm{~V}$ | $0.1 \Omega$ | $0.15+0.02$ |
|  | 3.00000A | $10 \mu \mathrm{~V}$ | $0.1 \Omega$ | $0.2+0.03$ |
|  | 10.00000 A | $10 \mu \mathrm{~V}$ | $0.005 \Omega$ | $0.25+0.05$ |
| Function | Range | Resolution | Test Current | 1 Year ( $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ) |
| Resistance *3 | $100.0000 \Omega$ | $100 \mu \Omega$ | 1 mA | $0.02+0.005$ |
|  | $1.000000 \mathrm{k} \Omega$ | $1 \mathrm{~m} \Omega$ | 1 mA | $0.02+0.002$ |
|  | $10.00000 \mathrm{k} \Omega$ | $10 \mathrm{~m} \Omega$ | $100 \mu \mathrm{~A}$ | $0.02+0.002$ |
|  | $100.0000 \mathrm{k} \Omega$ | $100 \mathrm{~m} \Omega$ | $10 \mu \mathrm{~A}$ | $0.02+0.002$ |
|  | $1.000000 \mathrm{M} \Omega$ | $1 \Omega$ | $1 \mu \mathrm{~A}$ | $0.02+0.004$ |
|  | $10.00000 \mathrm{M} \Omega$ | $10 \Omega$ | $0.1 \mu \mathrm{~A}$ | $0.1+0.004$ |
|  | $100.0000 \mathrm{M} \Omega$ | $100 \Omega$ | $0.1 \mu \mathrm{~A}$ (parallel $10 \mathrm{M} \Omega$ ) | $1.5+0.005$ |
| Diode test | 1.0000 V | $10 \mu \mathrm{~V}$ | 1 mA | $0.02+0.02$ |
| Continuity | $1000.00 \Omega$ | $10 \mathrm{~m} \Omega$ | 1 mA | $0.02+0.03$ |

Frequency and Period Characteristics *4

| Function | Range*2 | Frequency Hz | 1 Year Aging |
| :--- | :--- | :---: | :---: |
| Frequency <br> \& Period | 100 mV <br> to 750 V 4 | 10 to 40 | 0.03 |
|  |  | 40 to 300 k | 0.02 |

AC Characteristic Accuracy $\pm$ (\% of reading + \% of range) *1

| Function | Range*2 | Resolution | FFrequency Hz | 1 Year ( $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| AC Voltage (TRMS) *5 | 100.0000 mV | $0.1 \mu \mathrm{~V}$ | 10 to 20k | $0.12+0.05$ |
|  |  |  | 20k to 50k | $0.25+0.05$ |
|  |  |  | 50k to 100k | $0.65+0.08$ |
|  |  |  | 100k to 300k | $4.8+0.8$ |
|  | $\begin{aligned} & 1.000000 \mathrm{~V} \\ & \text { to } \\ & 750.000 \mathrm{~V} * 4 \end{aligned}$ | $1 \mu \mathrm{~V}$ to 1 mV | 10 to 20k | $0.12+0.04$ |
|  |  |  | 20k to 50k | $0.25+0.05$ |
|  |  |  | 50k to 100k | $0.65+0.08$ |
|  |  |  | 100k to 300k | $4.8+0.8$ |
| AC Current (TRMS) *5 | 1.000000 A | $1 \mu \mathrm{~V}$ | 10 to 1k | $0.2+0.04$ |
|  |  |  | 1 k to 5 k | $1.00+0.1$ |
|  | 3.00000A | $10 \mu \mathrm{~V}$ | 10 to 1 k | $0.3+0.06$ |
|  |  |  | 1 k to 5 k | $1.5+0.15$ |
|  | 10.00000A | $10 \mu \mathrm{~V}$ | 10 to 1k | $0.5+0.12$ |
|  |  |  | 1 k to 5k | $2.5+0.2$ |

Capacitance Characteristic Accuracy $\pm$ (\% of reading + \% of range) *1
Capacitance Characteristic Accuracy $\pm\left(\%\right.$ of reading + \% of range) ${ }^{*} 1$

| Function | Range | Test Current | 1 Year $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: |
| Capacitance <br> $* 6$ | 1 nF | $10 \mu \mathrm{~A}$ | $2.0+0.80$ |
|  | 10 nF | $10 \mu \mathrm{~A}$ | $1.0+0.50$ |
|  | 100 nF | $100 \mu \mathrm{~A}$ | $1.0+0.50$ |
|  | $1 \mu \mathrm{~F}$ | $100 \mu \mathrm{~A}$ | $1.0+0.50$ |
|  | $10 \mu \mathrm{~F}$ | $100 \mu \mathrm{~A}$ | $1.0+0.50$ |
|  | $100 \mu \mathrm{~F}$ | 1 mA | $1.0+0.50$ |
|  | 1 mF | 1 mA | $1.0+0.50$ |
|  | 10 mF | 1 mA | $1.0+0.50$ |

Thermocouple Characteristic*1

| Function | Type | Range | 1 Year ( $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: |
| Thermocouple *7 | B | $600^{\circ} \mathrm{C}$ to $1820^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ |
|  | C | $0^{\circ} \mathrm{C}$ to $2316^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ |
|  | E | $-250^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ |
|  | J | $-210^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ | $1.0{ }^{\circ} \mathrm{C}$ |
|  | K | $-200^{\circ} \mathrm{C}$ to $1372^{\circ} \mathrm{C}$ | $1.0^{\circ} \mathrm{C}$ |
|  | N | $-200^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$ | $1.0{ }^{\circ} \mathrm{C}$ |
|  | R | $0^{\circ} \mathrm{C}$ to $1767^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ |
|  | S | $0^{\circ} \mathrm{C}$ to $1767^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ |
|  | T | $-250^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$ | $1.5{ }^{\circ} \mathrm{C}$ |


| General information |  |
| :--- | :--- |
| Power supply | $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V} \pm 10 \%$ |
| Power frequency | $50 / 60 \mathrm{~Hz} \pm 10 \%$ |
| Power consumption Max | 25 VA |
| Operating temperature | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ |
| Operating humidity | $0^{\circ} \mathrm{C}$ to $31^{\circ} \mathrm{C} 80 \% \mathrm{RH}$ |
| Stock temperature | $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ |
| Operating altitude | Up to 2000 m |
| Dimension | $214.6(\mathrm{~W}) \times 88.6(\mathrm{H}) \times 280.7(\mathrm{D}) \mathrm{mm}$ |
| Weight | Approx. 2.7kg |
| Safety regulation | EN61010-1:2010 (3nd Edition) |
| EMC regulation | EN61326-1:2013 |
| Accessories | Power cable, USB cable, Test lead, Fuse, <br> CD-ROM (Application \& Instruction Manual) |

*1: Specifications are for 2-hour warm-up condition, 10PLC and they are relative to calibration standards.
$* 2: 20 \%$ over range on all ranges except 1000 VDC and $3 \mathrm{~A} / 10 \mathrm{~A}$ range.
*3: Specifications are for 4 -wire or 2 -wire when a Null operation is used
*4
${ }_{5}$ : Specifications are for sine wave input $>$
${ }^{*} 6$ : The Null function must be used.
${ }^{*} 7$ : The measurement accuracy excluded the error of test leads.
Options

| GTL-108A | 4-wire Test lead |
| :--- | :--- |

## Digital Multimeters

DL-2060VG
Digital Multimeter
(With USB/GP-IB function)
$\underset{\text { STANDARD }}{\text { GP-IE }}$
DL-2060VR
Digital Multimeter
(With USB/RS-232C function)
USEB
DL-2060 (With UsB function)
Digital Multimeter
$\mathrm{US} \mathbf{8}$
STANDARD

- Tricolor Vacuum Fluorescent Display (VFD)

High resolution of $5 \times 7$-dot matrix tricolor (red, yellow, white) display shows measurement values with measuring units in upper part and for measurement range in lower part simultaneously.

- Upper and Lower Limit Level Function

Automatic judgment of measurement adequacy in accordance with setting range from the points of upper/lower limit. If judged false, the unit beeps and displays a message "HI" or "LO".
Deactivating USB interface setting, a pulse signal generated by limit test is transmitted through the USB terminal to the external device directly.
USB and GP-IB (GP-IB is equipped with DL-2060G only) interface USB interface as standard equipment. The DL-2060G is equipped with both GP-IB and USB interface. Digital multimeter is controlled by SCPI command.

## Specifications

| Function | Range *2 | Resolution | Input R | Year (23C+/-5C) |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { DC Voltage } \\ & { }_{* 3} \end{aligned}$ | 100.0000 mV | $0.1 \mu \mathrm{~V}$ | $>10 \mathrm{G} \Omega$ | $0.0050+0.0035$ |
|  | 1.000000 V | $1.0 \mu \mathrm{~V}$ | $>10 \mathrm{G} \Omega$ | $0.0040+0.0007$ |
|  | 10.00000 V | $10 \mu \mathrm{~V}$ | $>10 \mathrm{G} \Omega$ | $0.0035+0.0005$ |
|  | 100.0000 V | $100 \mu \mathrm{~V}$ | $10 \mathrm{M} \Omega$ | $0.0045+0.0006$ |
|  | 1000.000 V | 1 mV | $10 \mathrm{M} \Omega$ | $0.0045+0.0010$ |
| Function | Range *2 | Resolution | Shunt R | Year (23C+/-5C) |
| DC Current | 10.00000 mA | 10 nA | $5.1 \Omega$ | $0.050+0.020$ |
|  | 100.0000 mA | 100 nA | $5.1 \Omega$ | $0.050+0.005$ |
|  | 1.000000 A | $1 \mu \mathrm{~A}$ | $0.1 \Omega$ | $0.100+0.010$ |
|  | 3.00000A | $10 \mu \mathrm{~A}$ | $0.1 \Omega$ | $0.120+0.020$ |
| Function | Range | Resolution | Test Current | Year ( $23 \mathrm{C}+/-5 \mathrm{C}$ ) |
| Resistance | 100.0000 ת | $100 \mu \Omega$ | 1 mA | $0.010+0.004$ |
|  | $1.000000 \mathrm{k} \Omega$ | $1 \mathrm{~m} \Omega$ | 1 mA | $0.010+0.001$ |
|  | $10.00000 \mathrm{k} \Omega$ | $10 \mathrm{~m} \Omega$ | $100 \mu \mathrm{~A}$ | $0.010+0.001$ |
|  | $100.0000 \mathrm{k} \Omega$ | $100 \mathrm{~m} \Omega$ | $10 \mu \mathrm{~A}$ | $0.010+0.001$ |
|  | $1.000000 \mathrm{M} \Omega$ | $1 \Omega$ | $5 \mu \mathrm{~A}$ | $0.010+0.001$ |
|  | $10.00000 \mathrm{M} \Omega$ | $10 \Omega$ | 500nA | $0.040+0.001$ |
|  | $100.0000 \mathrm{M} \Omega$ | $100 \Omega$ | 500nA/10M 2 | $0.800+0.010$ |
| Diode test | 1.0000 V | $10 \mu \mathrm{~V}$ | 1 mA | $0.010+0.020$ |
| Continuity | 1000.00 | $10 \mathrm{~m} \Omega$ | 1 mA | $0.010+0.030$ |

AC Characteristic Accuracy +/-(Rdg\% + range\%) *7

| Function | Range *6 | Resolution | FFrequency Hz | Year ( $23 \mathrm{C}+1-5 \mathrm{C}$ ) |
| :---: | :---: | :---: | :---: | :---: |
| AC <br> Voltage <br> (TRMS) | 100.0000 mV | $0.1 \mu \mathrm{~V}$ | 3 to 5 | $1.00+0.04$ |
|  |  |  | 5 to 10 | $0.35+0.04$ |
|  |  |  | 10 to 20k | $0.06+0.04$ |
|  |  |  | 20k to 50k | $0.12+0.05$ |
|  |  |  | 50k to 100k | $0.60+0.08$ |
|  |  |  | 100k to 300k | $4.00+0.50$ |
|  | $\begin{aligned} & 1.000000 \mathrm{~V} \\ & 10.00000 \mathrm{~V} \\ & 100.0000 \mathrm{~V} \\ & 750.000 \mathrm{~V} \\ & { }^{9} 9 \end{aligned}$ | $1.0 \mu \mathrm{~V}$ to 1 mV | 3 to 5 | $1.00+0.03$ |
|  |  |  | 5 to 10 | $0.35+0.03$ |
|  |  |  | 10 to 20k | $0.06+0.03$ |
|  |  |  | 20k to 50k | $0.12+0.05$ |
|  |  |  | 50k to 100k | $0.60+0.08$ |
|  |  |  | 100k to 300k | $4.00+0.50$ |
| AC Current (TRMS) | 1.000000 A | $1 \mu \mathrm{~V}$ | 3 to 5 | $1.00+0.04$ |
|  |  |  | 5 to 10 | $0.30+0.04$ |
|  |  |  | 10 to 5 k | $0.10+0.04$ |
|  | 3.00000 A | $10 \mu \mathrm{~V}$ | 3 to 5 | $1.10+0.06$ |
|  |  |  | 5 to 10 | $0.35+0.06$ |
|  |  |  | 10 to 5k | $0.15+0.06$ |

## DL-2060 Series

High Resolution LabVIEW C


Limited sales area:China, Korea, Singapore, Malaysia, Thailand, Vietnam

- Multipoint Scanner Card up to 20 channels

With an optional multipoint scanner card OP-42 (OP-41), different input signals up to 20 (10) channels can be automatically changed for measurement. Scanning channels, scanning times and scanning intervals are selectable. The unit can be installed by users easily. (DC voltage, AC voltage, resistance, frequency, cycle can be measured by OP-42 and OP-41)

- Useful Application Software

The application software (DL-TOOL \& DL-LINK) attached to the DL-2060 / DL-2060G can control panel setting and send measured data to Microsoft Excel and Word.

Frequency and Period Characteristics *5

| Frequency and Period Characteristics *5 |
| :--- |
| Function    <br> Range    |
| Frequency <br> and <br> Period |


| General information |  |
| :--- | :--- |
| Power input | $100 \mathrm{~V} / 220 \mathrm{~V} \pm 10 \%$ |
| Power frequency | $50 / 60 \mathrm{~Hz} \pm 10 \%$ |
| Power consumption Max | 25 VA |
| Operating temperature | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ |
| Operating humidity | $0^{\circ} \mathrm{C}$ to $31^{\circ} \mathrm{C} 80 \% \mathrm{RH}$ |
| Stock temperature | $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ |
| Maximum elevation | Max 2000 m |
| Dimension | $224(\mathrm{~W}) \times 113(\mathrm{H}) \times 373(\mathrm{D}) \mathrm{mm}$ |
| Weight | Approx. 4.4kg |
| Interface | USB $($ Type-B $)$ <br> GP-IB (DL-2060G only $)$ <br> Safety regulation |
| EMC regulation | EN61010-1:2010(3nd Edition) |
| Attached accessories | Power cable, USB cable, Test lead, Fuse, Manual |

${ }^{*} 1$ : Specifications are for $61 / 2$ digit and two hours warm up.
${ }^{*} 2: 20 \%$ over range on all ranges except $100 V D C$ and 3 A range.
${ }^{*} 3$ : a. Using continuous triggering for A/D Converter
b. Input current have to be less than 30 pay at $25 \mathrm{C} / \mathrm{deg}$.
*. Input protection for all range is 1000 Vpk .
b. Lead cable resistance are less than $10 \%$ at 100 and 1 k ranges
c. Input protection for all range is 1000 Vpk
*5: Specifications are for $61 / 2$ digit and two hours warm up
*6: $20 \%$ over range on all ranges except 750 VAC range
*7 : Specifications are for $61 / 2$ digit and two hours warm up, 3 Hz filter
$8: 20 \%$ over range on all ranges except 750VAC range
*9: 750VAC range limit is 100 kHz

Options

| OP-41T | Multi-Point Scanner Card (10ch) (supporting thermo couple) |
| :--- | :--- |
| OP-41 | Multi-Point Scanner Card (10ch) |
| OP-42 | Multi-Point Scanner Card (20ch) |
| GTL-205 | Test lead : Temperature probe adapter with thermocouple (K-type) |
| GTL-108A | 4-wire Test lead |

## Digital Multimeters

## DL-2141 (with Usb Device) 

## DL-2142 (with USB Storage/Device)

 $41 / 2$ Digital Multimeter ${ }^{\text {STANOBRO}}$DL-2142G (with USB Storage/Device and GPIB) <br>\section*{50,000 counts, VFD display}<br>- Dual measurement/dual display<br>Selectable measurement speeds, the maximum: 40 Readings/s for DCV<br>- The basic precision of $D C$ voltage: $0.02 \%$<br>- Auto/manual range selection<br>- True RMS (AC, AC+DC) measurements<br>- 11 different measurement functions<br>- Max./Min., REL/REL\#, MX+B, 1/X, Ref\%, Compare, Hold, dB, dBm

## Specifications

DC Voltage

| Range | Resolution | Full Scale | $\begin{gathered} \text { Accuracy } \\ \left(1 \text { year } 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right. \text { ) } \\ \hline \end{gathered}$ | Input Resistance |
| :---: | :---: | :---: | :---: | :---: |
| 500 mV | 10uV | 510 | 0.02\%+4 | $10 \mathrm{M} \Omega$ or $>10 \mathrm{G} \Omega$ |
| 5 V | 100uV | 5.1 |  | $10 \mathrm{M} \Omega$ or $>10 \mathrm{G} \Omega$ |
| 50 V | 1 mV | 51 |  | $11.1 \mathrm{M} \Omega$ |
| 500 V | 10 mV | 510 |  | $10.1 \mathrm{M} \Omega$ |
| 1000 V | 100 mV | 1020 |  | $10 \mathrm{M} \Omega$ |

- When the input value exceeds the full scale of the selected range, the display will show-OL- (over load) on the display.
- The specifications are guaranteed to an input voltage of 1000 V . A beeping alarm will go off when the input voltage is higher than 1000 V . 1000 V protection of 1000 V peak on all ranges.
DC Common Mode Rejection Ratio $>90 \mathrm{~dB}$ at $\mathrm{dc}, 50$ or $6 \mathrm{~Hz} \pm 0.1 \%$ ( $1 \mathrm{k} \Omega$ unbalanced, slow rates)
DC Current

| Range | Resolution | Full Scale | Accuracy <br> $\left(1\right.$ year $\left.23^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}\right)$ | Shunt <br> Resistance | Burden Voltage |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 500 uA | 10 nA | 510 | $0.05 \%+5$ | $100 \Omega$ | 0.06 V max |
| 5 mA | 100 nA | 5.1 | $0.05 \%+4$ | $100 \Omega$ | 0.6 V max |
| 50 mA | 1 uA | 51 | $0.05 \%+4$ | $1 \Omega$ | 0.14 V max |
| 500 mA | 10 uA | 510 | $0.10 \%+4$ | $1 \Omega$ | 1.4 V max |
| 5 A | 100 uA | 5.1 | $0.25 \%+5$ | $10 \mathrm{~m} \Omega$ | 0.5 V max |
| 10 A | 1 mA | 12 | $0.25 \%+5$ | $10 \mathrm{~m} \Omega$ | 0.8 V max |
| . |  |  |  |  |  |

$\cdot 500 u \mathrm{~A} \sim 500 \mathrm{~mA}$ range has a 3.6 V voltage limit protection and 0.5 A fuse protection. And 10 A range has a 12 A fuse protection.

- When the input value exceeds the full scale of the selected range, the display will show -OL- (over load) on the display.
-The specifications are guaranteed to an input of 10 A . A beeping alarm will go off when the input value is higher than 10 A .
AC Voltage, $\mathrm{ACV}+\mathrm{DCV}^{131}$ (AC Coupled)

| Range | Resolution | Full Scale | Accuracy ( 1 year $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $30 \mathrm{~Hz}-50 \mathrm{~Hz}$ | $50 \mathrm{~Hz}-10 \mathrm{kHz}$ | $10 \mathrm{kHz}-30 \mathrm{kHz}$ | $30 \mathrm{kHz}-100 \mathrm{kHz}$ |
| 500 mV | 10 uV | 510 | $1.00 \%+40$ | $0.50 \%+40$ | $2.00 \%+60$ | $3.00 \%+120$ |
| 5 V | 100 uV | 5.1 | $1.00 \%+20$ | $0.35 \%+15$ | $1.00 \%+20$ | $3.00 \%+50$ |
| 50 V | 1 mV | 51 | $1.00 \%+20$ | $0.35 \%+15$ | $1.00 \%+20$ | $3.00 \%+50$ |
| 500 V | 10 mV | 510 | x | $0.5 \%+15$ | $1.00 \%+20^{[2]}$ | $3.00 \%+50^{[2]}$ |
| 750 V | 100 mV | 765 | x | $0.5 \%+15$ | x | x |

## [1] Specifications are for sine wave inputs that are greater than $5 \%$ range. [2]lnput voltage $<300 \mathrm{~V}$. <br> [2] lnput voltage $<300 \mathrm{Vrms}$.

[3]The accuracy of ACV+DCV is equal to ACV's with 10 more digits added.

- The specifications are guaranteed to an input of 750 V . A beeping alarm will $g o$ off when the input value is higher than 750 V
- Input protection of 1000 V peak on all ranges.
- AC-coupled true RMS - measures the AC component of the input with up to 400 Vdc of bias on any range.
- AC Common Mode Rejection Ratio $>60 \mathrm{~dB}, 50$ or $6 \mathrm{~Hz} \pm 0.1 \%$ ( 1 k ) unbalanced, slow rates)

AC Current, ACI+DCI ${ }^{[3]}$ (AC Coupled)

| Range | Resolu-tion | Full Scale | Accuracy (1 year $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ) [1] |  |  |  | Burden Voltage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $30 \mathrm{~Hz}-50 \mathrm{~Hz}$ | $50 \mathrm{~Hz}-2 \mathrm{kHz}$ | $2 \mathrm{kHz}-5 \mathrm{kHz}$ | $5 \mathrm{kHz}-20 \mathrm{kHz}$ |  |
| 500uA | 10nA | 510 | 1.50\%+50 | 0.50\%+40 | 1.50\%+50 | 3.00\%+75 | 0.06 V max |
| 5 mA | 100nA | 5.1 | 1.50\%+40 | 0.50\%+20 | 1.50\%+40 | 3.00\%+60 | 0.6 V max |
| 50 mA | 1 uA | 51 | 1.50\%+40 | 0.50\%+20 | 1.50\%+40 | 3.00\%+60 | 0.14 V max |
| 500 mA | 10uA | 510 | 1.50\%+40 | 0.50\%+20 | 1.50\%+40 | 3.00\%+60[2] | 1.4 V max |
| 5A | 100uA | 5.1 | 2.0\%+40 | 0.50\%+30 | $x$ | x | 0.5 V max |
| 10A | 1 mA | 12 | 2.0\%+40 | 0.50\%+30 | x | x | 0.8 V max |
| [1] The 500 uA range requires an input of $>35$ uA to meet specifications. The $5 \mathrm{~mA} \sim 10 \mathrm{~A}$ ranges need more than $5 \%$ of full scale range to meet specifications. <br> [2] Input current ( $5 \mathrm{kHz} \sim 20 \mathrm{kHz}$ ) 330 mArms . <br> [3] The accuracy of ACl+DCl is equal to ACl's with 10 more digits added. <br> - The specifications are guaranteed to 10 A . A beeping alarm will go off when the input current being measured is higher than 10 A . |  |  |  |  |  |  |  |
| Diode |  |  |  |  |  |  |  |
| Range |  | Resolution | Full Scale |  | Test Current | $\begin{gathered} \text { Accuracy } \\ \left(1 \text { year } 23^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$ |  |
| 5 V |  | 100uV | 5.1 |  | 0.83 mA | 0.05\%+5 |  |

## DL-2140 Series

Dual Display and USB storage function
LabVIEW C


- Standard USB device interface to connect with a computer
- Temperature measurement function (DL-2142/ DL-2142G)
- USB storage function (DL-2142/ DL-2142G)
- GPIB interface (DL-2142G only)
Continuity

| Range | Resolution | Full Scale | Test Current | Accuracy <br> $\left(1\right.$ year $\left.23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $5000.0 \Omega$ | $100 \mathrm{~m} \Omega$ | 5100 | 0.83 mA | $0.1 \%+5$ |
| - Input protection of 500 V peak. ${ }^{*}$ Open circuit voltage approximates 6 V . <br> Resistance <br> Resistance | Resolution | Full Scale | Test Current | Accuracy <br> $\left(1\right.$ year $\left.23^{[2]} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ |
| $500 \Omega$ | $10 \mathrm{~m} \Omega$ | 510 | 0.83 mA | $0.1 \%+5^{[1]}$ |
| $5 \mathrm{k} \Omega$ | $100 \mathrm{~m} \Omega$ | 5.1 | 0.83 mA | $0.1 \%+33^{[1]}$ |
| $50 \mathrm{k} \Omega$ | $1 \Omega$ | 51 | 83 uA | $0.1 \%+3$ |
| $500 \mathrm{k} \Omega$ | $10 \Omega$ | 510 | 8.3 uA | $0.1 \%+3$ |
| $5 \mathrm{M} \Omega$ | $100 \Omega$ | 5.1 | 830 nA | $0.1 \%+3$ |
| $50 \mathrm{M} \Omega$ | $1 \mathrm{~K} \Omega$ | 51 | $560 \mathrm{nA} / / 10 \mathrm{M} \Omega$ | $0.3 \%+3$ |

[^3] standard test leads.

- Open circuit voltage approximates 6 V max on $500 \Omega \sim 5 \mathrm{M} \Omega$ range, approximates 5.5 V max on $50 \mathrm{M} \Omega$ range.
- Input protection of 500Vpeak on all ranges.

Capacitance

| Range | Resolution | Full Scale | Test Current | Accuracy <br> $\left(1\right.$ year $\left.23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{nF}: 0.5 \mathrm{nF} \sim 1 \mathrm{nF}^{[2]}$ | 0.001 nF | 5.1 | 8.3 uA | $2.0 \%+20$ |
| $5 \mathrm{nF}: 1 \mathrm{nF} \sim 5 \mathrm{nF}^{2]}$ |  |  |  | $2.0 \%+10$ |
| $50 \mathrm{nF}: 5 \mathrm{nF} \mathrm{\sim 10nn}^{[2]}$ | 0.01 nF | 51 | 8.3 uA | $2.0 \%+30$ |
| $50 \mathrm{nF}: 10 \mathrm{nF} \sim 50 \mathrm{nF}^{[2]}$ |  |  |  | $2.0 \%+10$ |
| 500 nF | 0.1 nF | 510 | 83 uA | $2.0 \%+4$ |
| 5 nF | 1 nF | 5.1 | 0.56 mA |  |
| 50 uF | 10 nF | 51 | 0.83 mA |  |

[1] For the $5 \mathrm{nF} \sim 50$ uF range make sure that the input is greater than $10 \%$ of the range.
[2] Need to use the REL function.

- Input protection of 500 V peak on all ranges.


## Frequency

| Measurement Range | Accuracy $\left(1\right.$ year $\left.23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ |
| :---: | :---: |
| $10 \mathrm{~Hz} \sim 500 \mathrm{~Hz}$ | $0.01 \%+5$ |
| $500 \mathrm{~Hz} \sim 500 \mathrm{KHz}$ | $0.01 \%+3$ |
| $500 \mathrm{KHz} \sim 1 \mathrm{MHz}$ | $0.01 \%+5$ |

$A C+D C$ measurements do not allow frequency measurements.

- Input protection of 1000 V peak on all ranges.

Temperature Specifications (DL-2142 Only)

| Sensor | Type | $\qquad$ | Resolution | $\begin{gathered} \text { Accuracy } \\ \left(1 \text { year } 23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thermocouple | J,K,T | $-200 \sim+300^{\circ} \mathrm{C}$ | $0.1{ }^{\circ} \mathrm{C}$ | $2{ }^{\circ} \mathrm{C}$ |
| - Note: The temperature specifications do not include sensor error. |  |  |  |  |
| General Specifications |  |  |  |  |
| Specification Conditions: | Temperature: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ <br> Humidity: $<80 \% \mathrm{RH}, 75 \% \mathrm{RH}$ for resistance measurement readings greater than 10M $\Omega$. |  |  |  |
| Operating Environment: $\left(0 \sim 50^{\circ} \mathrm{C}\right)$ | Temperature Range: $0 \sim 35^{\circ} \mathrm{C}$, Relative Humidity: $<80 \% \mathrm{RH}$; $>35^{\circ} \mathrm{C}$, Relative Humidity: $<70 \% \mathrm{RH}$ <br> Indoor use only, Altitude: 2000 meters, Pollution degree 2 |  |  |  |
| Storage Conditions $\left(-10 \sim 70^{\circ} \mathrm{C}\right)$ | Temperature Range: $0 \sim 35^{\circ} \mathrm{C}$, Relative Humidity: $<90 \% \mathrm{RH}$; $>35^{\circ} \mathrm{C}$, Relative Humidity: $<80 \% \mathrm{RH}$ |  |  |  |
| General: | Power Consumption: Max $15 \mathrm{VA} \mathrm{AC} 100 \mathrm{~V}-240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ Dimensions: 265 mm (W) X 107 mm (H) X 302 mm (D) Weight: Approximately 2.9 kg |  |  |  |
| Accessories | Accessories CD-ROMx1, Test leadsx1 ,Power cordx1 |  |  |  |

Accessory \& Option Parts for Power Supplies and Electronic Loads

| Description | Model | Remark |
| :---: | :---: | :---: |
| Conector kit | PSW-001 | PSW |
| GP-IB Adapter | GP-600B | PA-B |
| GPIB Interface | GUG-001 | PSW |
| RS232C Interface | GUR-001 | PSW approx. 40 cm |
| GP-IB/USB Control Board | IF-41GU | PW-A/PAR-A |
| RS-232C Control Board | IF-41RS | PW-A/PAR-A |
| USB Control Board | IF-41USB | PW-A/PAR-A |
| GP-IB Control Board | IF-50GP | LW |
| USB Control Board | IF-50USB | LW |
| GP-IB Control Board | IF-60GP | PSF-L/H |
| RS-232C/USB Control Board | IF-60RU | PSF-L/H |
| GP-IB/USB Control Board | IF-70GU | PS-A/PDS-A |
| Analog Control Board (compatible with PS series) | IF-70PS | PS-A/PDS-A |
| LAN/USB Control Board | IF-71LU | PDS-A |
| RS-232C Control Board | IF-71RS | PS-A/PDS-A |
| GP-IB/USB/RS-232C Control Board | IF-80GUR | LSA |
| Connecting Cable for GP-600B (1pc) | OP-18-PAB | PA-B |
| GP-IB Control Board | PEL-004 | LSG |


| Description | Model | Remarks |  |
| :---: | :---: | :---: | :---: |
| Guard Cap (2pcs) | OP-20GC | PA-B |  |
| Modular Cable | CB-0603S | $\begin{aligned} & \text { PW-A/PAR-A/ } \\ & \text { PS-A/PDS-A/ } \\ & \text { PSF-L/PSF-H/ } \\ & \text { LSA } \end{aligned}$ | approx. 0.3 m |
|  | CB-06100S |  | approx. 10 m |
|  | CB-0615S |  | approx. 1.5 m |
|  | CB-0630S |  | approx. 3m |
| D-sub 9pin Modular Connector | TA-66 | PW-A/PAR-A/ PS-A/PDS-A/ PSF-L/PSF-H/ LSA |  |
|  |  | PSF-L/H |  |
| Handle Kit | HK-10 |  |  |
| Handle Kit | HK-11 | PS-A/PDS-A |  |
| Test Lead | GTL-104A | Max. 10A, approx. 1m |  |
| Test Lead | GTL-105A | Max. 3A, approx. 1 m |  |
| Test Lead for PSW30V/80V/160V | GTL-123 | PSW <br> Max. 40A, approx. 1m |  |
| Test Lead for PSW250V/800V | GTL-130 | PSW |  |
| Extention Output Terminal for PSW30V/80V/160V | GET-001 | PSW <br> Max. 30A, approx. 60 cm |  |
| Extention Output Terminal for PSW250V/800V | GET-002 | PSW |  |
| Parallel connection cable | OP-22P | PSF-L/H, LSA |  |
|  | OP-23P3 | PS-A/PDS-A | for 2 or 3 sets |
|  | OP-23P6 | PS-A/PDS-A | for max. 6 sets |
|  | PSW-006 | PSW | for 2 sets |
|  | PSW-007 | PSW | for 2 or 3 sets |
|  | GTL-255 | LSG |  |
| Serial connection cable | OP-22S | PSF-L | for 2 sets |
|  | OP-23S | PS-A/PDS-A | for 2 sets |
|  | PSW-005 | PSW | for 2 sets |
| Joint kit | JK-10 | PSF-L/H |  |
| Connection kit for parallel operation | OP-21A | PSF-L | Horizontal installation for 2sets |
|  | OP-21B |  | Vertical installation for 2sets |
| GP-IB cable | CB-2420P | approx. 2m |  |
| USB cable | GTL-246 |  | A-B |

## Accessory \& Option Parts for Power Supplies and Electronic Loads

Rack Mount Adapter Option List

| Intended model | Rack mount \& Adapter/ Rack clamp | Rack mount clamp (Fixing attachement) |  | Blank panel |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Model | Model | Remarks | Model | Width |
| For PA-B seriese | RM-608J (JIS) <br> RM-608E (EIA) | RJ-608-PA | for 2 units | RB-608A <br> RB-608B <br> RB-608C <br> RB-608D <br> RB-608E | $\begin{aligned} & 1 / 2 \\ & 1 / 3 \\ & 1 / 4 \\ & 1 / 6 \\ & 1 / 12 \end{aligned}$ |
| For PW-A, PAR-A \& LW seriese |  | RJ-608-PW | for 3 units |  |  |
| For GP-600B |  | RJ-608-GP | for 1 unit |  |  |
| For PSF-L/H seriese |  | RJ-608-1/2 | For $1 / 2$ rack width |  |  |
| For PS-A, PDS-A series |  | $\begin{aligned} & \text { RJ-608-1/2 } \\ & \text { RJ-608-1/3 } \end{aligned}$ | For $1 / 2$ rack width For $1 / 3$ rack width |  |  |
| For LSA-165/165V1/330 |  | RJ-608-1/3 | For $1 / 3$ rack width |  |  |
| For LSA-1000 |  | RJ-608-1/2 (2pcs) | For 1/2 rack width | - | - |
| For PSW series | GRA-410-J (JIS) GRA-410-E (EIA) | Enclosed in GRA-410-J/E |  | Enclosed in GRA-410-J/E |  |
| For LSG-2100S | GRA-413 | Enclosed in GRA-413 |  | - | - |
| For LSG-175/350/1050 | GRA-414-J (JIS) GRA-414-E (EIA) | Enclosed in GRA-414-J/E |  | Enclosed in rack mount adapter |  |
| For STW-99/98 | GRA-417 | Enclosed in GRA-417 |  | - |  |

- PA-B/PW-A/PAR-A/LW series and GP-600B


L_ RJ-608-PA $\quad$ -


PW-A series
PAR-A series
LW series
All models:1/3 rack width
 attachments for 2 units instal lation and RJ-608-PW includes attachments for 3 units installation.

- PSF/PS-A/PDS-A/LSA series (with using RJ-608-1/3, 1/2)

| Seires | $1 / 6$ | $1 / 3$ | $1 / 2$ | $1 / 1$ |
| :--- | :---: | :---: | :---: | :---: |
| PS-A | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
| PDS-A |  | $\bigcirc$ | $\bigcirc$ |  |
| PSF-L |  |  | $\bigcirc$ |  |
| PSF-H |  |  | $\bigcirc$ |  |
| LSA |  | $\bigcirc$ |  | $\bigcirc$ |



L_ RJ-608-1/2


Brank panels
RB-608A $1 / 2$
RB-608B $1 / 3$
RB-608C 1/4
RB-608D $1 / 6$
RB-608E $\quad 1 / 12$
These series use fixing attachments, RJ-608-1/3 or RJ-608-1/2.
RJ-608-1/3 can fix $1 / 3$ rack width unit or $1 / 6$ rack width unit ( 1 or 2 units). RJ-608-1/2 can fix $1 / 2$ rack width unit, $1 / 3$ rack width unit or $1 / 6$ width unit (up to 3 units). Rack mount width unit (LSA-1000) needs two sets of RJ-608-1/2 for fixing.
Five kinds of brank panels are available so that various units can be mounted.

Probes List

| Model | Attenuator | Applied capacity | Input impedance ${ }^{* 1}$ | Bandwidth | Rise time | Max input voltage | Read out | Oscilloscopes/Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GTP-350A-2 | $\times 10$ | $10 \sim 25 \mathrm{pF}$ | 10M $\Omega$ /approx.13pF | 350 MHz | 1 ns | $500 \mathrm{~V}^{* 3}$ | - |  |
|  | $\times 1$ | - | $1 \mathrm{M} \Omega$ / a +approx.46pF*2 | 6 MHz | 58ns | $300 V^{* 4}$ | - |  |
| GTP-250B-2 | $\times 10$ | $10 \sim 35 \mathrm{pF}$ | $10 \mathrm{M} \Omega$ /approx.17pF | 250 MHz | 1.4 ns | $500 V^{* 3}$ | - |  |
|  | $\times 1$ | - | $1 \mathrm{M} \Omega$ / a +approx.47pF*2 | 6 MHz | 58ns | $300 V^{* 4}$ | - |  |
| GTP-200B-4 | $\times 10$ | $5 \sim 30 \mathrm{pF}$ | $10 \mathrm{M} \Omega / 10.5 \mathrm{pF} \sim 17.5 \mathrm{pF}$ | 200 MHz | 1.8 ns | 600Vpk | - | $\begin{aligned} & \text { DCS-2204E } \\ & \text { DCS-2202E } \end{aligned}$ |
|  | $\times 1$ | - | $1 \mathrm{M} \Omega / 65 \mathrm{pF} \sim 105 \mathrm{pF}$ | 10 MHz | 35ns | 200Vpk | - |  |
| GTP-150B-4 | $\times 10$ | $10 \sim 35 \mathrm{pF}$ | $10 \mathrm{M} \Omega$ /approx.17pF | 150 MHz | 2.3 ns | $500 V^{* 3}$ | - |  |
|  | $\times 1$ | - | $1 \mathrm{M} \Omega / \mathrm{a}+$ approx.47pF*2 | 6 MHz | 58ns | $300 V^{* 4}$ | - |  |
| GTP-100B-4 | $\times 10$ | $10 \sim 35 \mathrm{pF}$ | 10M $\Omega$ /approx.17pF | 100 MHz | 3.5 ns | $500 V^{* 3}$ | - | DCS-2104E/DCS-2102E DCS-1104B/DCS-1102B |
|  | $\times 1$ | - | $1 \mathrm{M} \Omega / \mathrm{a}+$ approx.47pF*2 | 6 MHz | 58ns | $300 V^{* 4}$ | - |  |
| GTP-070B-4 | $\times 10$ | $10 \sim 35 \mathrm{pF}$ | 10M $\Omega$ /approx.17pF | 60 MHz | 5.8ns | $500 V^{* 3}$ | - | DCS-2074E/72E, DCS-1074B/72B <br> DCS-4605 |
|  | $\times 1$ | - | $1 \mathrm{M} \Omega / \mathrm{a}+$ approx.47pF*2 | 6MHz | 58ns | $300 V^{* 4}$ | - |  |
| PC-59 | $\times 10$ | $20 \sim 35 \mathrm{pF}$ | $10 \mathrm{M} \Omega / 12.5 \mathrm{pF}$ | 150 MHz | 2.3 ns | DC600V | - |  |
| PC-54 | $\times 10$ | $20 \sim 45 \mathrm{pF}$ | $10 \mathrm{M} \Omega / 22 \mathrm{pF}$ | 60 MHz | 5.8 ns | DC600V | - |  |
|  | $\times 1$ | - | $1 \mathrm{M} \Omega / 200 \mathrm{pF}$ or less | 6 MHz | 58 ns |  | - |  |
| PC-52 | $\times 10$ | $20 \sim 35 \mathrm{pF}$ | $10 \mathrm{M} \Omega / 14 \mathrm{pF}$ | 100 MHz | 3.5 ns | DC600V | - |  |
|  | $\times 1$ | - | $1 \mathrm{M} \Omega / 150 \mathrm{pF}$ or less | 6 MHz | 58ns |  | - |  |
| PC-26 | $\times 10$ | $20 \sim 35 \mathrm{pF}$ | $10 \mathrm{M} \Omega / 13 \mathrm{pF}$ | 150 MHz | 2.3 ns | DC600V | $\bigcirc$ | BNC-BNC |

※ 1 : Using for $1 \mathrm{M} \Omega$ input oscilloscope
※ $2: a=$ Input capacity for oscilloscope
※ 3 : Level will be down when frequency 500 V CAT I /300V CAT II (DC + peak AC)
: Level will be down when frequency 300 V CAT I 1150 V CAT II (DC + peak AC)

| Description | Model | Remarks |
| :---: | :---: | :---: |
| GP-IB card | OPT. 1 | STW-99/98 |
| High Voltage Test Pistol approx. 2 m | GHT-113 | STW-99/98 nc1nkv//ac8kV |
| High Voltage Test Probe | GHT-205-G |  |
| High Voltage Test lead | GHT-114 | STW-99/98 |
| Test lead for Groud Bond approx. 1m | GTL-115 |  |
| Test lead approx. 500 mm | GHT-108 | STW-S1 STW-S2 <br> STW-S2 |
| Test lead for Scanner Box approx. 1.5m (Red) | GHT-116R | STW-S1 STW-S2 |


| Description | Model | Remarks |
| :---: | :---: | :---: |
| Test lead for Scanner Box approx. 1.5 m (Black) | GHT-116B | STW-S1 STW-S2 |
| Groud Bond Wiring lead approx. 450 mm | GHT-109 | STW-S2 |
| Test lead for GB H approx. 1.5 m (Red) | GTL-116R | STW-S2 |
| Test lead for GB L approx. 1.5m (Black) | GTL-116B | STW-S2 |
| RS-232C cable approx. 700 mm | GTL-235 | STW-S1/STW- $\mathrm{Q}^{\angle}$ |
| USB cable (A-A) approx. 1.8 m | GTL-247 | STW-99/98 |

Accessory \& Option Parts for Digital Multimeters

| Description | Model | Remarks |
| :--- | :--- | :--- |
| 4-wire Test lead | GTL-108A | DL-2060/1060 |
| Test lead <br> Temperature probe adapter with <br> thermocouple (K-type), <br> approx. 1m | GTL-205A | DL-2140/2060/1060 |
| Test lead | GTL-207A | DL-2140 |


| Description | Model | Remarks |  |
| :--- | :--- | :--- | :--- |
| 10chMulti-Point Scanner Card with <br> supproting thermocouple | OP-41T |  |  |
| 20ch Multi-Point Scanner Card | OP-42 | DL-2060 |  |
| Test lead | UT-2660CA001 |  |  |

Accessory \& Option Parts

| Description | Model | Remarks |
| :--- | :--- | :--- |
| BNC-alligator clip | GTL-101 | approx. 1 m |
| BNC-BNC | GTL-110 | approx. 1 m |
| Banana plug-alligator clip cable | GTL-103 | approx. 1.2 m |


| Description | Model | Remarks |
| :--- | :--- | :--- |
| $50 \Omega$ Termnator <br> $D C \sim 1 G H z, V S W R 1.1$ | TA-57 |  |
|  |  |  |

## TEXIO

## TEXIO TECHNOLOGY CORPORATION

7F Towa Fudosan Shin Yokohama Bldg.,
2-18-13 Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033 Japan
TEL: +81(0)45-620-2305 FAX: +81(0)45-534-7181

- The design and specifications of the products listed
in the catalog are subject to change without prior notice.
Also please note that some of the products
may be discontinued without prior notice.
https://www.texio.co.jp/

For details of information, please ask the following dealer.


[^0]:    Parallel connection kit, OP-21A (for holizontal installation) / OP-21B (for vartical installation) includes a Bus bar, OP-22P and JK-10.

    * PSF-H series can not connect a Bus bar because the output terminals are different from PSF-L series output terminals in shape.

[^1]:    * Dimensions (Max. Dimensions) W $\times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$

    Type I : $70 \times 124(139.5) \times 364(415.5)$
    Type II: $140 \times 124(139.5) \times 364(415.5)$
    Type III: $210 \times 124(139.5) \times 364(415.5)$

[^2]:    * 1: 0.5 mVrms for the channels of $\pm 24 \mathrm{~V}$ or les

[^3]:    [1] Using the REL function. If you don't use the REL function then increase the error by $0.2 \Omega$.
    [2] When measuring resistances greater than $500 \mathrm{k} \Omega$, please use shielded test leads to eliminate the noise interference that may be induced by

